Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Planta ; 257(4): 67, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36843173

RESUMEN

MAIN CONCLUSION: Blue light exposure delays tomato seed germination by decreasing endosperm-degrading hydrolase activities, a process regulated by CRY1a-dependent signaling and the hormonal balance between ABA and GA. The germination of tomato seeds (Solanum lycopersicum L.) is tightly controlled by an internal hormonal balance, which is also influenced by environmental factors such as light. In this study, we investigated the blue light (BL)-mediated impacts on physiological, biochemical, and molecular processes during the germination of the blue light photoreceptor CRYPTOCHROME 1a loss-of-function mutant (cry1a) and of the hormonal tomato mutants notabilis (not, deficient in ABA) and procera (pro, displaying a GA-constitutive response). Seeds were germinated in a controlled chamber in the dark and under different intensities of continuous BL (ranging from 1 to 25 µmol m-2 s-1). In general, exposure to BL delayed tomato seed germination in a fluency rate-dependent way due to negative impacts on the activities of endosperm-degrading hydrolases, such as endo-ß-mannanase, ß-mannosidase, and α-galactosidase. However, not and pro mutants presented higher germination speed index (GSI) compared to WT despite the BL influence, associated with higher hydrolase activities, especially evident in pro, indicating that the ABA/GA hormonal balance is important to diminish BL inhibition over tomato germination. The cry1a germination percentage was higher than in WT in the dark but its GSI was lower under BL exposure, suggesting that functional CRY1a is required for BL-dependent germination. BL inhibits the expression of GA-biosynthetic genes, and induces GA-deactivating and ABA-biosynthetic genes. The magnitude of the BL influence over the hormone-related transcriptional profile is also dependent upon CRY1a, highlighting the complex interplay between light and hormonal pathways. These results contribute to a better understanding of BL-induced events behind the photoregulation of tomato seed germination.


Asunto(s)
Endospermo , Solanum lycopersicum , Endospermo/genética , Endospermo/metabolismo , Solanum lycopersicum/genética , Germinación , Semillas/fisiología , Criptocromos/genética , Criptocromos/metabolismo , beta-Manosidasa/genética , beta-Manosidasa/metabolismo , Percepción , Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
J Sci Food Agric ; 103(9): 4360-4370, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36788650

RESUMEN

BACKGROUND: Soybean is widely cultivated around the world, including regions with salinity conditions. Salt stress impairs plant physiology and growth, but recent evidence suggests that silicon (Si) is able to mitigate this stressful condition. Therefore, the purpose of this study was to evaluate how different strategies of Si application impact on salt stress tolerance of an intermediate Si accumulator species (soybean). Therefore, we applied four treatments: Si-untreated plants (Si 0); foliar spraying at 20 mmol L-1 (Si F); nutritive solution addition at 2.0 mol L-1 (Si R), and combined foliar spraying at 20 mmol L-1 plus nutritive solution at 2.0 mmol L-1 (Si F + R). We investigated how Si application modified growth, leaf gas exchange, photosynthetic pigments, chlorophyll fluorescence, relative water content (RWC), nutrient accumulation, and ion homeostasis of soybean plants submitted to different levels of salt stress (50 and 100 mmol L-1 NaCl). RESULTS: Salinity induced an expressive reduction in ion accumulation, plant water status, and growth of soybean, while Si application promoted contrary effects and increased potassium (K+ ) accumulation, water status, photosynthetic pigment content, chlorophyll fluorescence parameters, and gas exchange attributes. Additionally, Si application enhanced Si accumulation associated with decreased Na+ uptake and improved morpho-physiological growth. CONCLUSION: The use of exogenous Si can be an efficient strategy to attenuate the harmful effects of salt stress in soybean plants. The best application strategy was observed with combined foliar spraying with Si included in the nutritive solution (Si F + R). © 2023 Society of Chemical Industry.


Asunto(s)
Glycine max , Silicio , Silicio/farmacología , Estrés Salino , Agua , Clorofila
3.
Ecotoxicology ; 29(5): 594-606, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32333252

RESUMEN

Cadmium (Cd) is probably the most damaging metal to plant species; with a long biological half-life, it can be taken up by plants, disrupting the cell homeostasis and triggering several metabolic pathways. Selenium (Se) improves plant defence systems against stressful conditions, but the biochemical antioxidant responses to Cd stress in tomato plants is poorly understood. To further address the relationship of Cd-stress responses with Se mineral uptake, Cd and Se concentration, proline content, MDA and H2O2 production, and the activity of SOD, APX, CAT and GR enzymes were analyzed in Micro-Tom (MT) plants submitted to 0.5 mM Cd. The results revealed different responses according to Se combination and Cd application. For instance, roots and leaves of MT plants treated with Se exhibited an increase in dry mass and nutritional status, exhibited lower proline content and higher APX and GR activities when compared with plants with no Se application. Plants submitted to 0.5 mM Cd, irrespective of Se exposure, exhibited lower proline, MDA and H2O2 content and higher SOD, CAT and GR activities. Selenium may improve tolerance against Cd, which allowed MT plants exhibited less oxidative damage to the cell, even under elevated Cd accumulation in their tissues. The results suggest that Se application is an efficient management technique to alleviate the deleterious effects of Cd-stress, enhancing the nutritional value and activity of ROS-scavenging enzymes in tomato plants.


Asunto(s)
Cadmio/toxicidad , Estrés Oxidativo/fisiología , Selenio/metabolismo , Contaminantes del Suelo/toxicidad , Solanum lycopersicum/fisiología , Antioxidantes , Glutatión , Peróxido de Hidrógeno , Oxidación-Reducción , Hojas de la Planta , Raíces de Plantas
4.
Physiol Plant ; 165(2): 413-426, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30552688

RESUMEN

Agricultural activities are affected by many biotic and abiotic stresses associated with global climate change. Predicting the response of plants to abiotic stress under future climate scenarios requires an understanding of plant biochemical performance in simulated stress conditions. In this study, the antioxidant response of Panicum maximum Jacq. cv. Mombaça exposed to warming (+2°C above ambient temperature) (eT), water deficit (wS) and the combination eT + wS was analysed under field conditions using a temperature free-air-controlled enhancement facility. Warming was applied during the entire growth period. Data were collected at 13, 19 and 37 days after the start of the water deficit treatment (DAT) and at two sampling times (6:00 and 12:00 h). A significant decrease in chlorophyll was observed under the wS treatment, but an increment in total chlorophyll was observed in eT + wS, particularly at 19 DAT. Significant increase in H2 O2 content, malondialdehyde and protein oxidation was observed in the wS treatment at noon of the third sampling. In the combined wS + eT stress treatment, the activity of the enzymatic antioxidant system increased, particularly of superoxide dismutase (SOD; EC 1.15.1.1) and ascorbate peroxidase (APX; EC 1.11.1.11). The chlorophyll fluorescence images showed that the photochemical performance was not significantly affected by the treatments. In conclusion, under simulated future warming and water stress conditions, the photosystem II (PSII) activity of P. maximum acclimated to moderate warming and a water-stressed environment associated with a relatively favourable antioxidant response, particularly in the activity of APX and SOD.


Asunto(s)
Antioxidantes/metabolismo , Calentamiento Global , Panicum/metabolismo , Agua/metabolismo , Aire , Ascorbato Peroxidasas/metabolismo , Fluorescencia , Glutatión/metabolismo , Glutatión Reductasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido , Malondialdehído/metabolismo , Microclima , Oxidación-Reducción , Complejo de Proteína del Fotosistema II/metabolismo , Pigmentos Biológicos/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Lluvia , Superóxido Dismutasa/metabolismo , Temperatura
5.
Artículo en Inglés | MEDLINE | ID: mdl-30195060

RESUMEN

Fluoxetine (FLX) is a selective serotonin reuptake inhibitor (SSRI) antidepressant widely used in clinics and very often found in environmental samples of urban aquatic ecosystems in concentrations ranging from ng/L to µg/L. Fish populations might be especially susceptible to FLX due to the presence of conserved cellular receptors of serotonin. Neurotoxic effects on fish biota of polluted water bodies may be expected, but there are no sufficient studies in the current literature to elucidate this hypothesis. Batteries of embryo larval assays with zebrafish were performed to evaluate the potential effects of FLX exposure, including environmentally relevant concentrations. Evaluated parameters included survival, development, behaviour and neuronal biochemical markers. Regarding acute toxicity, a 168 h-LC50 value of 1.18 mg/L was obtained. Moreover, hatching delay and loss of equilibrium were observed, but at a concentration level much higher than FLX measured environmental concentrations (>100 µg/L). On the other hand, effects on locomotor and acetylcholinesterase activity (≥0.88 and 6 µg/L, respectively) were found at levels close to the maximum reported FLX concentration in surface waters. Altogether, these results suggest that FLX is neurotoxic to early life stages of zebrafish, in a short period of time causing changes in important ecological attributes which can probably be linked from molecular to population level.


Asunto(s)
Conducta Animal/efectos de los fármacos , Inhibidores de la Colinesterasa/toxicidad , Embrión no Mamífero/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Fluoxetina/toxicidad , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Contaminantes Químicos del Agua/toxicidad , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Animales , Antidepresivos de Segunda Generación/efectos adversos , Biomarcadores/metabolismo , Resistencia a Medicamentos , Embrión no Mamífero/enzimología , Larva/efectos de los fármacos , Larva/enzimología , Larva/crecimiento & desarrollo , Dosificación Letal Mediana , Proteínas del Tejido Nervioso/metabolismo , Concentración Osmolar , Inhibidores Selectivos de la Recaptación de Serotonina/efectos adversos , Especificidad de la Especie , Pruebas de Toxicidad Aguda , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/metabolismo
6.
Rev Hosp Clin Fac Med Sao Paulo ; 57(6): 257-64, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12612757

RESUMEN

INTRODUCTION: Traumatic spinal cord injury is one of the most disabling conditions occurring in man and thus stimulates a strong interest in its histopathological, biochemical, and functional changes, primarily as we search for preventive and therapeutic methods. PURPOSE: To develop an experimental model for transplantation of cells from the fetal rat central nervous system to the site of an injured spinal cord of an adult rat in which the transplanted cells survive and become integrated. This experimental model will facilitate investigations of factors that promote regeneration and functional recovery after spinal cord trauma. MATERIAL AND METHODS: Fifteen adult Wistar rats underwent laminectomy, and an spinal cord lesion was made with microdissection. Fetal spinal cord tissue was then transplanted to the site of the injury. The rats were monitored over a 48-hour period, and then their vertebral column was completely removed for histological analysis. RESULTS: In 60% of transplanted rats, the fetal tissue at the injured site remained viable in the site of the lesion.


Asunto(s)
Trasplante de Tejido Fetal/métodos , Traumatismos de la Médula Espinal/cirugía , Médula Espinal/trasplante , Trasplante de Células Madre , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Tejido Nervioso , Ratas , Ratas Wistar , Médula Espinal/citología , Médula Espinal/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...