Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Trop ; 238: 106791, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36493854

RESUMEN

The Aedes aegypti mosquito is a vector of important viral diseases in tropical countries, as Zika, Chikungunya and Dengue fever. The use of the chemical control of the insect life cycle is one of the most popular strategies used as prophylactic for the human population exposed. However, potential environmental and human toxicity, as well as the resistance phenomena acquired by the insects, are the main limitations for the available options. This scenario encourages the continuous search for more potent and less inconvenient chemical alternatives. In this paper, we report a potent in vitro larvicidal activity in Aedes aegypti found to a chalcone compound, previously mined by an exhaustive virtual screening by molecular docking calculations in an important protein for the larvae growth. The protein 3-hydroxykynurenine transaminase enzyme (PDB ID: 6MFB) was then combined with potential ligands provided by a homemade databank, containing secondary metabolites found in plants of the brazilian Caatinga biome. Structural rationalization of the compounds with high affinity pointed the chalcone class as most promising. Subsequent in vitro tests allowed the identification of a specific molecule with very high larvicidal potency (100% of lethality at 2.5 ppm). These results can be used in future and more refined studies, to propose a larvicidal formulation for direct application and the exploration of new compounds of this chemical class.


Asunto(s)
Aedes , Chalcona , Chalconas , Insecticidas , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Simulación del Acoplamiento Molecular , Insecticidas/farmacología , Mosquitos Vectores , Insectos , Larva , Extractos Vegetales/química
2.
Acta Parasitol ; 67(3): 1186-1198, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35587306

RESUMEN

INTRODUCTION: The lobster cockroach Nauphoeta cinerea (N. cinerea) is indicated as a promising non-mammalian model, because it presents behavioral and biochemical alterations also observed in conventional models. In this research, we identified and characterized the distribution of protozoa that inhabit the digestive system (DS) of N. cinerea cockroaches. METHODS: The adult specimens of N. cinerea used in this study (n = 32) were obtained at the Federal University of Santa Maria, dissected and had their visceral contents observed in bright-field microscopy without staining and after application of lugol, Ziehl-Neelsen staining, EA36 trichrome and simulated dark-field microscopy with application of nankin ink. The presence of protozoa in different portions of the DS was semi-quantified by a system of crosses (+). RESULTS: The main taxa observed were: amoebas (Archaemebae:Entamoebida), gregarins (Apicomplexa:Eugregarinide), coccidia (Apicomplexa:Eucoccidiorida), kinetoplastids (Kinetoplastea:Kinetoplastida) and oxymonads (Preaxostyla:Oxymonadida). The highest prevalence of amoebas and gregarines was observed in the medial portion of the DS, while for the other groups, this was seen in the final portion, and in the case of coccidia, such prevalence was specially evidenced by the alcohol-acid coloration. In the present work, the great biological diversity that exists in the microbiota of the digestive system of Nauphoeta cinerea was demonstrated, being possible to find several pathogenic species for humans such as Entamoeba histolytica/dispar/moshkovskii, Cryptosporidium sp. and Cyclospora cayetanensis. There is still a lot to know about the interactions between endocommensal protozoa and their respective invertebrate hosts, so the best way to clarify such relationships is through molecular and genetic test.


Asunto(s)
Cucarachas , Criptosporidiosis , Cryptosporidium , Entamoeba , Microbiota , Adulto , Animales , Sistema Digestivo , Humanos , Insectos , Nephropidae
3.
Antioxidants (Basel) ; 11(2)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35204302

RESUMEN

Thiazolidine compounds NJ20 {(E)-2-(2-(5-bromo-2-methoxybenzylidene)hydrazinyl)-4-(4-nitrophenyl)thiazole} and NW05 [(2-(benzo (d) (1,3) dioxol-4-ylmethylene)-N-(4-bromophenyl)-thiosemicarbazone] potentiated the effect of norfloxacin in resistant bacteria; however, there are no reports on their effects on Nauphoeta cinerea in the literature. The objective of this work was to evaluate the behavioral effects and oxidative markers of NW05 and NJ20 in lobster cockroach N. cinerea. To evaluate the behavioral study, a video tracking software was used to evaluate the locomotor points and the exploratory profile of cockroaches in the horizontal and vertical regions of a new environment. The total concentration of thiol and reduced glutathione (GSH), substances reactive to thiobarbituric acid (TBARS), free iron (II) content and mitochondrial viability were determined. The antioxidant potential was evaluated by the DPPH method. Both substances induced changes in the behavior of cockroaches, showing a significant reduction in the total distance covered and in the speed. In the cell viability test (MTT), there was a significant reduction for NJ20 (1 mM). NJ20 caused a significant increase in total levels of thiol and non-protein thiol (NPSH), although it also slightly increased the content of malondialdehyde (MDA). Both compounds (NW05 and NJ20) caused a significant reduction in the content of free iron at a concentration of 10 mM. In conclusion, the compound NJ20 caused moderate neurotoxicity (1 mM), but had good antioxidant action, while NW05 did not show toxicity or significant antioxidant activity in the model organism tested. It is desirable to carry out complementary tests related to the antioxidant prospection of these same compounds, evaluating them at different concentrations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...