Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Immunol Methods ; 494: 113058, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33891922

RESUMEN

Inflammatory bowel disease (IBD) is thought to be caused by an aberrant host response to the commensal enteric flora in genetically susceptible individuals. Dendritic cells (DCs) play a key role in the regulation of this response as they sample gut commensals. In healthy individuals DCs actively contribute to tolerance upon recognition of these resident bacteria, whereas in individuals with IBD, DCs will initiate an inflammatory response. To mimic the disease response in vitro, human monocyte-derived DCs were matured with E. coli causing the cells to produce high levels of the pro-inflammatory cytokine IL-12/IL-23p40 (p40) and low levels of the anti-inflammatory cytokine IL-10. A siRNA-based screening assay was developed and screened to identify potential therapeutic targets that shift this balance towards an immunosuppressive state with lower levels of p40 and higher levels of IL-10. The screening assay was optimized and quality controlled using non-targeting controls and positive control siRNAs targeting IL12B and TLR4 transcripts. In the primary screen, smartpool siRNAs were screened for reduction in p40 expression, induction of IL-10 levels, or increase in IL-10:p40 ratios without affecting cell viability. All potential targets were taken forward into a confirmation screen in a different DC donor in which four individual siRNAs per target were screened. At least two siRNAs per target should have an effect to be considered a valid target. This screen resulted in a concise list of ten genes, of which their role in DC maturation is currently being investigated.


Asunto(s)
Antiinflamatorios/farmacología , Células Dendríticas/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Mucosa Intestinal/inmunología , ARN Interferente Pequeño/genética , Presentación de Antígeno , Antígenos Bacterianos/inmunología , Diferenciación Celular , Células Cultivadas , Células Dendríticas/efectos de los fármacos , Humanos , Tolerancia Inmunológica , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Tamizaje Masivo , Simbiosis
2.
Sci Transl Med ; 6(268): 268ra178, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25540325

RESUMEN

Age-related neurodegenerative disorders including Alzheimer's disease and Huntington's disease (HD) consistently show elevated DNA damage, but the relevant molecular pathways in disease pathogenesis remain unclear. One attractive gene is that encoding the ataxia-telangiectasia mutated (ATM) protein, a kinase involved in the DNA damage response, apoptosis, and cellular homeostasis. Loss-of-function mutations in both alleles of ATM cause ataxia-telangiectasia in children, but heterozygous mutation carriers are disease-free. Persistently elevated ATM signaling has been demonstrated in Alzheimer's disease and in mouse models of other neurodegenerative diseases. We show that ATM signaling was consistently elevated in cells derived from HD mice and in brain tissue from HD mice and patients. ATM knockdown protected from toxicities induced by mutant Huntingtin (mHTT) fragments in mammalian cells and in transgenic Drosophila models. By crossing the murine Atm heterozygous null allele onto BACHD mice expressing full-length human mHTT, we show that genetic reduction of Atm gene dosage by one copy ameliorated multiple behavioral deficits and partially improved neuropathology. Small-molecule ATM inhibitors reduced mHTT-induced death of rat striatal neurons and induced pluripotent stem cells derived from HD patients. Our study provides converging genetic and pharmacological evidence that reduction of ATM signaling could ameliorate mHTT toxicity in cellular and animal models of HD, suggesting that ATM may be a useful therapeutic target for HD.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Enfermedad de Huntington/patología , Proteínas Mutantes/toxicidad , Proteínas del Tejido Nervioso/toxicidad , Proteínas de Transporte de Serotonina en la Membrana Plasmática/toxicidad , Adulto , Anciano , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular , Citoprotección/efectos de los fármacos , Modelos Animales de Enfermedad , Drosophila melanogaster/metabolismo , Dosificación de Gen , Técnicas de Silenciamiento del Gen , Histonas/metabolismo , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones Mutantes Neurológicos , Persona de Mediana Edad , Morfolinas/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Estrés Oxidativo/efectos de los fármacos , Cambios Post Mortem , Transducción de Señal/efectos de los fármacos , Tioxantenos/farmacología
3.
Mol Cell Neurosci ; 43(3): 281-6, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20005957

RESUMEN

UBB(+1), a mutant form of ubiquitin, is both a substrate and an inhibitor of the proteasome which accumulates in the neuropathological hallmarks of Huntington disease (HD). In vitro, expression of UBB(+1) and mutant huntingtin synergistically increase aggregate formation and polyglutamine induced cell death. We generated a UBB(+1) transgenic mouse line expressing UBB(+1) within the neurons of the striatum. In these mice lentiviral driven expression of expanded huntingtin constructs in the striatum results in a significant increase in neuronal inclusion formation. Although UBB(+1) transgenic mice show neither a decreased lifespan nor apparent neuronal loss, they appear to be more vulnerable to toxic insults like expanded polyglutamine proteins due to a modest proteasome inhibition. These findings underscore the relevance of an efficient ubiquitin-proteasome system in HD.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Huntington/patología , Inhibidores de Proteasoma , Ubiquitina/metabolismo , Animales , Muerte Celular , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Masculino , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Péptidos/toxicidad , Ubiquitina/genética
4.
Mol Cell Neurosci ; 34(1): 10-9, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17092742

RESUMEN

Polyglutamine diseases are characterized by neuronal intranuclear inclusions of expanded polyglutamine proteins, which are also ubiquitinated, indicating impairment of the ubiquitin-proteasome system. E2-25K (Hip2), an ubiquitin-conjugating enzyme, interacts directly with huntingtin and may mediate ubiquitination of the neuronal intranuclear inclusions in Huntington disease. E2-25K could thus modulate aggregation and toxicity of expanded huntingtin. Here we show that E2-25K is involved in aggregate formation of expanded polyglutamine proteins and polyglutamine-induced cell death. Both a truncated mutant, lacking the catalytic tail domain, as well as a full antisense sequence, reduce aggregate formation. Strikingly, both E2-25K mutants also reduced polyglutamine-induced cell death. In postmortem brain material of both Huntington disease and SCA3, E2-25K staining of polyglutamine aggregates was observed in a subset of neurons bearing intranuclear neuronal inclusions. These results demonstrate that targeting by ubiquitination plays an important role in the pathology of polyglutamine diseases.


Asunto(s)
Encéfalo/enzimología , Cuerpos de Inclusión Intranucleares/enzimología , Degeneración Nerviosa/enzimología , Neuronas/enzimología , Péptidos/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Dominio Catalítico/genética , Muerte Celular/genética , Línea Celular Tumoral , Humanos , Proteína Huntingtina , Enfermedad de Huntington/enzimología , Enfermedad de Huntington/genética , Enfermedad de Huntington/fisiopatología , Cuerpos de Inclusión Intranucleares/genética , Cuerpos de Inclusión Intranucleares/patología , Enfermedad de Machado-Joseph/enzimología , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/fisiopatología , Mutación/genética , Degeneración Nerviosa/genética , Degeneración Nerviosa/fisiopatología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/patología , Proteínas Nucleares/metabolismo , Péptidos/genética , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/genética
5.
Neurobiol Aging ; 27(4): 515-23, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16226348

RESUMEN

It is increasingly appreciated that failures in the ubiquitin-proteasome system play a pivotal role in the neuropathogenesis of many neurological disorders. This system, involved in protein quality control, should degrade misfolded proteins, but apparently during neuropathogenesis, it is unable to cope with a number of proteins that, by themselves, can consequently accumulate. Ubiquitin is essential for ATP-dependent protein degradation by the proteasome. Ubiquitin+1 (UBB+1) is generated by a dinucleotide deletion (DeltaGU) in UBB mRNA. The aberrant protein has a 19 amino acid extension and has lost the ability to ubiquitinate. Instead of targeting proteins for degradation, it has acquired a dual substrate-inhibitor function; ubiquitinated UBB+1 is a substrate for proteasomal degradation, but can at higher concentrations inhibit, proteasomal degradation. Furthermore, UBB+1 protein accumulates in neurons and glial cells in a disease-specific way, and this event is an indication for proteasomal dysfunction. Many neurological and non-neurological conformational diseases have the accumulation of misfolded proteins and of UBB+1 in common, and this combined accumulation results in the promotion of insoluble protein deposits and neuronal cell death as shown in a cellular model of Huntington's disease.


Asunto(s)
Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/fisiopatología , Complejo de la Endopetidasa Proteasomal/metabolismo , Eliminación de Secuencia , Ubiquitina/metabolismo , Adenosina Trifosfato , Factores de Edad , Animales , Agregación Celular/fisiología , Muerte Celular , Humanos , Enfermedades del Sistema Nervioso/enzimología , Enfermedades del Sistema Nervioso/genética , Complejo de la Endopetidasa Proteasomal/genética , Ubiquitina/genética
6.
Hum Mol Genet ; 13(16): 1803-13, 2004 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15198995

RESUMEN

Polyglutamine diseases are characterized by neuronal intranuclear inclusions (NIIs) of expanded polyglutamine proteins, indicating the failure of protein degradation. UBB(+1), an aberrant form of ubiquitin, is a substrate and inhibitor of the proteasome, and was previously reported to accumulate in Alzheimer disease and other tauopathies. Here, we show accumulation of UBB(+1) in the NIIs and the cytoplasm of neurons in Huntington disease and spinocerebellar ataxia type-3, indicating inhibition of the proteasome by polyglutamine proteins in human brain. We found that UBB(+1) not only increased aggregate formation of expanded polyglutamines in neuronally differentiated cell lines, but also had a synergistic effect on apoptotic cell death due to expanded polyglutamine proteins. These findings implicate UBB(+1) as an aggravating factor in polyglutamine-induced neurodegeneration, and clearly identify an important role for the ubiquitin-proteasome system in polyglutamine diseases.


Asunto(s)
Apoptosis/fisiología , Encéfalo/metabolismo , Trastornos Heredodegenerativos del Sistema Nervioso/metabolismo , Cuerpos de Inclusión/metabolismo , Péptidos/metabolismo , Ubiquitina/metabolismo , Western Blotting , Supervivencia Celular , Clonación Molecular , ADN Complementario/genética , Técnica del Anticuerpo Fluorescente , Trastornos Heredodegenerativos del Sistema Nervioso/fisiopatología , Humanos , Inmunohistoquímica , Plásmidos/genética , Transfección , Células Tumorales Cultivadas
7.
J Biol Chem ; 278(39): 37471-9, 2003 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-12882973

RESUMEN

Genes positioned close to telomeres in yeast are silenced by a heterochromatin-like structure containing Sir proteins. To investigate whether silencing also affects DNA repair, we studied removal of UV lesions by photolyase and nucleotide excision repair (NER) in strains containing the URA3 gene inserted 2 kilobases from a telomere. URA3 was transcriptionally active in sir3delta mutants, partially silenced in SIR3 cells, or completely silenced by overexpression of SIR3 or deletion of RPD3. The active URA3 showed efficient repair by both pathways. Fast repair of the promoter and 3' end by photolyase reflected a non-nucleosomal structure. Partial silencing had no remarkable effect on photolyase but reduced repair by NER, indicating differential accessibility for the two repair reactions. Complete silencing inhibits NER and photolyase in the coding region as well as in the promoter and the 3'-end. Conventional nuclease footprinting analyses revealed subtle changes in the promoter proximal nucleosome under partially silenced conditions but a pronounced reorganization of chromatin extending over the whole gene in silenced chromatin. Thus, both repair systems are sensitive to chromatin changes associated with silencing and provide direct evidence for a compact structure of heterochromatin.


Asunto(s)
Reparación del ADN , Silenciador del Gen , Heterocromatina/efectos de la radiación , Proteínas Fúngicas/genética , Heterocromatina/química , Histonas/química , Fotólisis , TATA Box , Telómero , Transcripción Genética , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...