Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Neurobiol ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316355

RESUMEN

Autism spectrum disorder (ASD) etiology probably involves a complex interplay of both genetic and environmental risk factors, which includes pre- and perinatal exposure to environmental stressors. Thus, this study evaluated the effects of prenatal exposure to valproic acid (VPA) combined with maternal deprivation (MD) on behavior, oxidative stress parameters, and inflammatory state at a central and systemic level in male and female rats. Pregnant Wistar rats were exposed to VPA during gestation, and the offspring were submitted to MD. Offspring were tested for locomotor and social behavior; rats were euthanized, where the cerebellum, posterior cortex, prefrontal cortex, and peripheric blood were collected for oxidative stress and inflammatory analysis. It was observed that young rats (25-30 days old) exposed only to VPA presented a lower social approach when compared to the control group. VPA + MD rats did not present the same deficit. Female rats exposed to VPA + MD presented oxidative stress in all brain areas analyzed. Male rats in the VPA and VPA + MD groups presented oxidative stress only in the cerebellum. Regarding inflammatory parameters, male rats exposed only to MD exhibited an increase in pro-inflammatory cytokines in the blood and in the cortex total. The same was observed in females exposed only to VPA. Animals exposed to VPA + MD showed no alterations in the cytokines analyzed. In summary, gestational (VPA) and perinatal (MD) insults can affect molecular mechanisms such as oxidative stress and inflammation differently depending on the sex and brain area analyzed. Combined exposition to VPA and MD triggers oxidative stress especially in female brains without evoking an inflammatory response.

2.
Immunol Res ; 72(4): 788-796, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38698191

RESUMEN

The pathological manifestation of the inflammatory process primarily stems from the heightened release of pro-inflammatory cytokines, with IL-1ß standing out as a pivotal cytokine. The excessive presence of IL-1ß disrupts immune signaling, thereby assuming a pathogenic and exacerbating role in the pathophysiology of numerous inflammatory diseases. Regulating IL-1ß levels becomes crucial, and the IL-1Ra molecule serves this purpose by binding to the IL-1R1 receptor, thereby impeding the binding of IL-1ß. Several pharmaceuticals have entered the market, aiming to neutralize IL-1ß's biological function through diverse mechanisms. However, the existing IL-1ß inhibitors are recombinant proteins, characterized by a high production cost and limited stability. Therefore, this study aimed to predict a peptide, named DAP1-2, based on the IL-1Ra molecule. DAP1-2 was designed to attenuate responses triggered by IL-1ß by blocking the IL-1R1 receptor. The selection of amino acids from the IL-1Ra molecule (PDB: I1RA) that interact with the three domains of the IL-1R1 receptor was performed using Swiss PDB Viewer. After prediction, chemical synthesis was made using the Fmoc-Synthesis technique. The efficacy of DAP1-2 was assessed using RAW 264.7 cells, which were exposed to LPS (5 µg/mL) for 24 h to induce IL-1ß expression and treated with the peptides in different concentrations. IL-1ß levels were assessed using ELISA, and the gene expression of IL-1ß was measured by RT-qPCR, additionally to the viability test. Results revealed a significant reduction in IL-1ß levels and gene expression in cells stimulated by LPS and treated with DAP1-2 in different concentrations. Furthermore, the MTT assay confirmed the nontoxic nature of the peptides on the cell lineage. This alternative approach shows promise as an IL-1 inhibitor, due to the stability, ease of production, and cost-effectiveness provided by the use of synthetic peptides.


Asunto(s)
Interleucina-1beta , Receptores Tipo I de Interleucina-1 , Interleucina-1beta/metabolismo , Animales , Ratones , Receptores Tipo I de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/antagonistas & inhibidores , Humanos , Péptidos/farmacología , Células RAW 264.7 , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Unión Proteica , Lipopolisacáridos/inmunología
3.
Metab Brain Dis ; 39(4): 635-648, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38429463

RESUMEN

Obesity results from an energy imbalance and has been considered an epidemic due to its increasing rates worldwide. It is classified as a low-grade chronic inflammatory disease and has associated comorbidities. Different nutritional strategies are used for the purpose of weight loss, highlighting low-carbohydrate (LC) diets, ketogenic diets, and intermittent fasting (IF). These strategies can lead to metabolic and behavioral changes as they stimulate different biochemical pathways. Therefore, this study evaluated memory, energy metabolism, neuroinflammation, oxidative stress, and antioxidant defense parameters in mice subjected to an LC diet, ketogenic diet (KD), or IF. Eighty male Swiss mice, 60 days old, were divided into 4 groups: control, LC, KD, or IF. Body weight was measured weekly, and food intake every 48 h. After 15 days of nutritional interventions, the animals were subjected to the behavioral object recognition test and subsequently euthanized. Then, visceral fat was removed and weighed, and the brain was isolated for inflammatory and biochemical analysis. We concluded from this study that the LC and KD strategies could damage memory, IF improves the production of adenosine triphosphate (ATP), and the LC, KD, and IF strategies do not lead to neuroinflammatory damage but present damage at the level of oxidative stress.


Asunto(s)
Dieta Cetogénica , Estrés Oxidativo , Animales , Masculino , Ratones , Estrés Oxidativo/fisiología , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/etiología , Enfermedades Neuroinflamatorias/metabolismo , Dieta Baja en Carbohidratos , Ayuno/metabolismo , Metabolismo Energético/fisiología , Encéfalo/metabolismo
4.
Inflammation ; 47(4): 1262-1277, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38236386

RESUMEN

Chronic hyperglycemia caused by diabetes mellitus (DM) slows down the healing process due to prolonged inflammation which impedes the regeneration progression. Photobiomodulation (PBM) is considered a non-pharmacological intervention and has anti-inflammatory and biostimulatory effects that accelerate the healing process. Currently found IL-1ß inhibitors are difficult to implement due to their cytotoxic potential, excessive amounts, and invasive administration, and therefore, the application of this peptide in diabetic wounds represents a promising intervention to help resolve the inflammatory response. This study aimed to investigate the effect of an IL-1ß inhibitor molecule associated with PBM irradiation in a model of epithelial injury in diabetic mice. After the induction of the DM model with streptozotocin (STZ), the skin lesion model was implemented through surgical excision. Sixty C57BL/6 mice divided into five experimental groups (n = 12) were used: excisional wound (EW), DM + EW, DM + EW + DAP 1-2 (inhibitor peptide), DM + EW + PBM, and DM + EW + PBM + DAP 1-2. Treatment started 12 h after wound induction and was performed daily for 5 days. Twenty-four hours after the last application, the animals were euthanized and the outer edge of the wound was removed. The results obtained demonstrate that the DM + EW + PBM + DAP 1-2 group caused a reduction in the levels of pro-inflammatory cytokines, an increase in anti-inflammatory cytokines, and an increase in TGF-ß and maintenance of the cellular redox state with a consequent reduction in levels of inflammatory infiltrate and concomitant stimulation of type III collagen gene expression, as well as a decrease in the size of the wound in square centimeter 6 days after the injury. Only the combination of therapies was able to favor the process of tissue regeneration due to the development of an approach capable of acting at different stages of the regenerative process, through the mechanisms of action of interventions on the inflammatory process by avoiding its stagnation and stimulating progression of regeneration.


Asunto(s)
Diabetes Mellitus Experimental , Terapia por Luz de Baja Intensidad , Ratones Endogámicos C57BL , Cicatrización de Heridas , Animales , Cicatrización de Heridas/efectos de los fármacos , Terapia por Luz de Baja Intensidad/métodos , Ratones , Interleucina-1beta/metabolismo , Masculino
5.
Biochem Biophys Res Commun ; 654: 47-54, 2023 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-36889034

RESUMEN

The bacterial cellulose membrane (CM) is a promising biomaterial due to its easy applicability and moist environment. Moreover, nanoscale silver compounds (AgNO3) are synthesized and incorporated into CMs to provide these biomaterials with antimicrobial activity for wound healing. This study aimed to evaluate the cell viability of CM incorporated with nanoscale silver compounds, determine the minimum inhibitory concentration (MIC) for Escherichia coli and Staphylococcus aureus, and its use on in vivo skin lesions. Wistar rats were divided according to treatment: untreated, CM (cellulose membrane), and AgCM (CM incorporated with silver nanoparticles). The euthanasia was performed on the 2nd, 7th, 14th, and 21st days to assess inflammation (myeloperoxidase-neutrophils, N-acetylglucosaminidase-macrophage, IL-1ß, IL-10), oxidative stress (NO-nitric oxide, DCF-H2O2), oxidative damage (carbonyl: membrane's damage; sulfhydryl: membrane's integrity), antioxidants (superoxide dismutase; glutathione), angiogenesis, tissue formation (collagen, TGF-ß1, smooth muscle α-actin, small decorin, and biglycan proteoglycans). The use of AgCM did not show toxicity, but antibacterial effect in vitro. Moreover, in vivo, AgCM provided balanced oxidative action, modulated the inflammatory profile due to the reduction of IL-1ß level and increase in IL-10 level, in addition to increased angiogenesis and collagen formation. The results suggest the use of silver nanoparticles (AgCM) enhanced the CM properties by providing antibacterial properties, modulation the inflammatory phase, and consequently promotes the healing of skin lesions, which can be used clinically to treat injuries.


Asunto(s)
Interleucina-10 , Nanopartículas del Metal , Ratas , Animales , Interleucina-10/farmacología , Plata/farmacología , Celulosa , Peróxido de Hidrógeno/farmacología , Ratas Wistar , Cicatrización de Heridas , Antibacterianos/farmacología , Bacterias , Colágeno/farmacología , Modelos Animales
6.
Curr Drug Targets ; 24(3): 287-296, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36515017

RESUMEN

INTRODUCTION: The association between triamcinolone hexacetonide (TH) and gold nanoparticles (GNPs) represents a promising treatment due to the potential anti-inflammatory and antioxidant effects of these compounds. In this study, we evaluated the effects of intra-articular treatment of TH associated with GNPs in a mechanical model of osteoarthritis (OA). METHODS: Fifty Wistar rats were divided into five groups: Sham; OA; OA+TH; OA+GNPs; OA+TH-GNPs. Both applications were performed 30 and 60 days after the model was induced. After 30 days of the last application, the animals were euthanized. RESULTS: Only the combined treatment with TH and GNPs promoted a reduction in proinflammatory cytokines and an increase in anti-inflammatory cytokines. The OA+TH-GNPs group obtained a significant reduction in the production of oxidants and oxidative damage markers while an increase in antioxidants. Histologically, all treated groups showed results of a significant increase in cartilage thickness and chondrocyte count, the OA+TH-GNPs group had similar behavior to the group without osteoarthritis, with significantly smaller amounts of chondrocytes than the OA group. CONCLUSION: The intra-articular use of TH associated with GNPs may be able to prevent the progression of the pathology and minimize joint degradation.


Asunto(s)
Cartílago Articular , Nanopartículas del Metal , Osteoartritis , Ratas , Animales , Oro , Ratas Wistar , Cartílago Articular/metabolismo , Osteoartritis/metabolismo , Modelos Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/metabolismo , Citocinas/metabolismo , Condrocitos/metabolismo , Condrocitos/patología
7.
J Dev Orig Health Dis ; 13(4): 441-454, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34503598

RESUMEN

Fructose (C6H12O6), also known as levulose, is a hexose. Chronic consumption of fructose may be associated with increased intrahepatic fat concentration and the development of insulin resistance as well as an increase in the prevalence of nonalcoholic fatty liver disease and hyperlipidemia during pregnancy. Despite the existence of many studies regarding the consumption of fructose in pregnancy, its effects on fetuses have not yet been fully elucidated. Therefore, the objective of this study was to evaluate the genetic and biochemical effects in offspring (male and female) of female mice treated with fructose during pregnancy and lactation. Pairs of 60-day-old Swiss mice were used and divided into three groups; negative control and fructose, 10%/l and 20%/l doses of fructose groups. After offspring birth, the animals were divided into six groups: P1 and P2 (males and females), water; P3 and P4 (males and females) fructose 10%/l; and P5 and P6 (males and females) fructose 20%/l. At 30 days of age, the animals were euthanized for genetic and biochemical assessments. Female and male offspring from both dosage groups demonstrated genotoxicity (evaluated through comet assay) and oxidative stress (evaluated through nitrite concentration, sulfhydril content and superoxide dismutase activity) in peripheral and brain tissues. In addition, they showed nutritional and metabolic changes due to the increase in food consumption, hyperglycemia, hyperlipidemia, and metabolic syndrome. Therefore, it is suggested that high consumption of fructose by pregnant female is harmful to their offspring. Thus, it is important to carry out further studies and make pregnant women aware of excessive fructose consumption during this period.


Asunto(s)
Resistencia a la Insulina , Enfermedades Metabólicas , Efectos Tardíos de la Exposición Prenatal , Animales , Lactancia Materna , Femenino , Fructosa/efectos adversos , Humanos , Lactancia , Masculino , Ratones , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo
8.
J Orthop Res ; 39(12): 2546-2555, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33580538

RESUMEN

This study aimed to evaluate the effects of intra-articular treatment with hyaluronic acid (HA) associated with GNPs in a mechanical model of osteoarthritis induced by median meniscectomy (MM). Fifty Wistar rats (2 months weighing between 250 and 300 g) were used, divided into five groups of 10 animals each: Sham, osteoarthritis (OA), OA + HA, OA + gold nanoparticles (GNPs), and OA + HA + GNPs. Intra-articular treatment was started 30 days after the model was induced, with a frequency of 2 weeks for 60 days. Fifteen days after the last application, the animals were euthanized with the removal of the joint tissue for biochemical and histological analysis. The model used was able to mimic osteoarthritis, characterized by the presence of high levels of proinflammatory cytokines, oxidative stress, and degeneration of joint surfaces (Grade III, according to SCORE OARSI). The isolated use of HA or GNPs provided beneficial results to the joint; however, only the group subjected to the association between HA and GNPs showed the attenuation of oxidative stress and reduced proinflammatory markers, with a simultaneous increase in levels of anti-inflammatory cytokines and growth factors. Upon histological analysis, only the OA + HA + GNPs group achieved the restoration of the thickness of the joint cartilage with reduced damage and return to the intact joint surface. The results found demonstrated that the association of GNPs with HA was able to reverse the deleterious effects caused by the model by inhibiting the progressive degeneration of joint surfaces, representing a promising treatment for osteoarthritis.


Asunto(s)
Nanopartículas del Metal , Osteoartritis de la Rodilla , Osteoartritis , Animales , Citocinas , Oro/uso terapéutico , Ácido Hialurónico/farmacología , Inyecciones Intraarticulares , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , Osteoartritis de la Rodilla/tratamiento farmacológico , Ratas , Ratas Wistar
9.
Scand J Med Sci Sports ; 31(3): 610-622, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33176018

RESUMEN

Cryotherapy is a therapeutic modality widely used for the treatment of muscle injuries to control pain and inflammatory processes. This study aimed to investigate the effects of cryotherapy on the inflammatory and oxidative stress parameters and mechanical properties of, and pain in, the skeletal muscles of rats with lacerative muscle injury. The rats were anesthetized with 4% isoflurane and subjected to gastrocnemius muscle laceration injury. After injury, all animals in the intervention groups received cryotherapy treatment for 20 minutes using plastic bags containing crushed ice. The protocol comprised three daily applications at 3-hour intervals on the day of injury, with reapplication 24 hours later. Seventy-two male Wistar rats were divided into three groups: sham, muscle injury (MI), and MI + cryotherapy (MI + cryo). Muscle mechanical properties were analyzed by mechanical tensile testing on day 7 after injury. The MI + cryo group showed reduced TNF-α, IFN-γ, and IL1ß levels; elevated IL4, IL6, and IL10 levels; reduced oxidant production and carbonyl levels; and elevated sulfhydryl contents. Animals that underwent tissue cooling showed superoxide dismutase activity and glutathione levels close to those of the animals in the sham group. The MI and MI + cryo groups showed reduced values of the evaluated mechanical properties and lower mechanical thresholds compared to those of the animals from the sham group. Our results demonstrated that the proposed cryotherapy protocol reduced the inflammatory process and controlled oxidative stress but did not reverse the changes in the mechanical properties of muscle tissues or provide analgesic effects within the time frame analyzed.


Asunto(s)
Crioterapia , Laceraciones/fisiopatología , Laceraciones/terapia , Músculo Esquelético/lesiones , Músculo Esquelético/fisiología , Cicatrización de Heridas/fisiología , Animales , Citocinas/sangre , Fluoresceínas/metabolismo , Glutatión/metabolismo , Inflamación/fisiopatología , Masculino , Músculo Esquelético/metabolismo , Nitritos/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Ratas Wistar , Superóxido Dismutasa/metabolismo , Resistencia a la Tracción
10.
Inflammation ; 43(6): 2232-2244, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32647956

RESUMEN

Percutaneous collagen induction (PCI) is an alternative treatment for skin dysfunctions, it aims to stimulate collagen production by encouraging normal wound healing that occurs after any trauma by inducing microlesions; also it may be potentiated with the association with drugs such as hyaluronic acid (HA). Our objective was to evaluate the effects of PCI associated with hyaluronic acid (0.9%) on inflammatory process, oxidative stress, and collagen production in rat epidermis. For the study, 36 adult Wistar rats were randomly divided into 6 groups (n = 6): Control; PCI 0.5; PCI 1.0; HA; PCI 0.5 + HA; and PCI 1.0 + HA. The animals were anesthetized, trichotomized, and the application of therapies was performed once; After 7 days, the animals were euthanized for removal of the skin region. Levels of pro-inflammatory (IL1, IL6, TNFα), anti-inflammatory (IL4 and IL10) cytokines and growth factors (FGF, TGFß) were evaluated, besides oxidative stress parameters and histological analysis. In combination groups, there is a decrease in TNFα compared with the control and PCI groups in contrast to a significant increase in anti-inflammatory cytokines and growth factors. Oxidant and oxidative damage levels showed a significant decrease in PCI + HA groups in relation to PCI groups while antioxidant defense increased in PCI + HA groups compared with the control group. The number of fibroblasts was increased in the PCI 1.0 group in relation to the control, HA, and PCI 0.5. The number of blood vessels and collagen area was increased in groups PCI and PCI + HA compared with the HA group. We conclude that the combination of PCI with HA is able to accelerate the acute inflammatory process, reducing its deleterious effects and anticipating the chronic response, contributing to tissue repair.


Asunto(s)
Colágeno/metabolismo , Ácido Hialurónico/metabolismo , Inflamación , Estrés Oxidativo , Animales , Antioxidantes/metabolismo , Citocinas/metabolismo , Fibroblastos/metabolismo , Quimioterapia de Inducción , Masculino , Intervención Coronaria Percutánea , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno , Cicatrización de Heridas/efectos de los fármacos
11.
Mater Sci Eng C Mater Biol Appl ; 110: 110681, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32204109

RESUMEN

The use of nanotechnology for administering drugs is a recent development that presents promising results. Therapeutic Pulsed Ultrasound (TPU) is one such therapeutic option and is widely used for treating soft tissue lesions. Thus, the objective of this study was to investigate the therapeutic effect of phonophoresis using diclofenac (DC) linked to gold nanoparticles (GNPs) in the skeletal muscle of rats used as a model of traumatic muscular injury. Wistar rats were divided into eight groups (N = 10): Sham, Muscle injury (MI), MI + TPU, MI + DC, MI + GNPs, MI + TPU + DC, MI + TPU + GNPs, and MI + TPU + DC-GNPs. The traumatic injury was performed in the gastrocnemius with a single direct traumatic impact via an injuring press. The animals received daily treatment for 5 consecutive days with TPU and gel with DC and/or GNPs. Two hours after the last treatment session, animals were euthanized and the gastrocnemius muscle surgically removed for histological and biochemical analysis. The groups exposed to some therapies (MI + TPU + DC, MI + TPU + GNPs and MI + TPU + DC-GNPs) showed reduced levels of pro-inflammatory cytokines, whereas an increase in anti-inflammatory cytokine levels was observed in the group exposed to all therapies combined (MI + TPU + DC-GNPs). Reactive species production and protein damage resulting from oxidative damage was lower for the group exposed to all tested therapies had lower production. Lower protein damage was also observed in the TPU + GNPs group. The group that underwent all tested therapies combined showed a significant increase in antioxidants compared to the MI group. During histological analysis, the MI group showed large amounts of cell infiltration and centralized nuclei, whereas the MI + TPU + DC-GNPs group showed structural improvements. Pain levels in the MI + TPU + DC-GNPs group were lower than those of the MI group. We believe that the association of TPU with DC linked to GNPs decreases the inflammation caused by traumatic muscle injury and accelerates tissue repair.


Asunto(s)
Diclofenaco/uso terapéutico , Oro/química , Nanopartículas del Metal/química , Músculo Esquelético/lesiones , Fonoforesis , Heridas y Lesiones/tratamiento farmacológico , Animales , Catalasa/metabolismo , Diclofenaco/farmacología , Modelos Animales de Enfermedad , Glutatión/metabolismo , Hiperalgesia/complicaciones , Nanopartículas del Metal/ultraestructura , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Ratas Wistar , Espectroscopía Infrarroja por Transformada de Fourier , Superóxido Dismutasa/metabolismo , Heridas y Lesiones/complicaciones , Heridas y Lesiones/patología
12.
ACS Biomater Sci Eng ; 6(9): 5132-5144, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-33455264

RESUMEN

Healing is the process responsible for restoring the integrity of the body's internal or external structures when they rupture. Photobiomodulation (PBM) stands out as one of the most efficient resources in the treatment of epithelial lesions, as well as hyaluronic acid (HA), which has been emerging as a new molecule for the treatment of dermal and epidermal lesions. The biological application of gold nanoparticles (GNPs) shows promising results. This study aimed to investigate the possible anti-inflammatory and antioxidant effects of the association between PBM and GNPs-linked HA in an epithelial lesion model. Fifty Wistar rats were randomly distributed in the Control Group (CG); (PBM); (PBM + HA); (PBM + GNPs); (PBM + GNPs-HA). The animals were anesthetized, trichotomized, and induced to a surgical incision in the dorsal region. Topical treatment with HA (0.9%) and/or GNPs (30 mg/kg) occurred daily associated with 904 nm laser irradiation, dose of 5 J/cm2, which started 24 h after the lesion and was performed daily until the seventh day. The levels of proinflammatory (IL1 and TNFα), anti-inflammatory (IL10 and IL4) and growth factors (FGF and TGFß) cytokines and oxidative stress parameters were evaluated, besides histological analysis through inflammatory infiltrate, fibroblasts, new vessels, and collagen production area. Finally, for the analysis of wound size reduction, digital images were performed and subsequently analyzed by the IMAGEJ software. The treated groups showed a decrease in proinflammatory cytokine levels and an increase in anti-inflammatory cytokines. TGFß and FGF levels also increased in the treated groups, especially in the combination therapy group (PBM + GNPs-HA). Regarding the oxidative stress parameters, MPO, DCF, and Nitrite levels decreased in the treated groups, as well as the oxidative damage (Carbonyl and Thiol groups). In contrast, antioxidant defense increased in the groups with the appropriate therapies proposed compared to the control group. Histological sections were analyzed where the inflammatory infiltrate was lower in the PBM + GNPs-HA group. The number of fibroblasts was higher in the PBM and PBM + HA treated groups, whereas collagen production was higher in all treated groups. Finally, in the analysis of the wound area contraction, the injury group presented a larger area in cm2 compared to the other groups. Taken together, these results allow us to observe that the combination of PBM + GNPs-HA optimized the secretion of anti-inflammatory cytokines, proliferation and cell differentiation growth factors, and made an earlier transition to the chronic phase, contributing to the repair process.


Asunto(s)
Terapia por Luz de Baja Intensidad , Nanopartículas del Metal , Animales , Oro , Ácido Hialurónico , Ratas , Ratas Wistar , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...