Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Trends Genet ; 39(8): 593-595, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37179160

RESUMEN

Telomeres are transcribed into long noncoding telomeric repeat-containing RNA (TERRA). Or so we thought. Recently, Al-Turki and Griffith provided evidence that TERRA can code for valine-arginine (VR) or glycine-leucine (GL) dipeptide repeat proteins by undergoing repeat-associated non-ATG (RAN) translation. This finding uncovers a new mechanism by which telomeres can impact cellular function.


Asunto(s)
ARN Largo no Codificante , ARN Largo no Codificante/genética , Telómero/genética , Telómero/metabolismo
2.
bioRxiv ; 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37090589

RESUMEN

Telomeres are prone to formation of the common oxidative lesion 8-oxoguanine (8oxoG), and the acute production of 8oxoG damage at telomeres is sufficient to drive rapid cellular senescence. OGG1 and MUTYH glycosylases initiate base excision repair (BER) at 8oxoG sites to remove the lesion or prevent mutation. Here, we show OGG1 loss or inhibition, or MUTYH loss, partially rescues telomeric 8oxoG-induced senescence, and loss of both glycosylases results in a near complete rescue. Loss of these glycosylases also suppresses 8oxoG-induced telomere fragility and dysfunction, indicating that single-stranded break (SSB) intermediates arising downstream of glycosylase activity impair telomere replication. The failure to initiate BER in glycosylase-deficient cells suppresses PARylation at SSB intermediates and confers resistance to the synergistic effects of PARP inhibitors on damage-induced senescence. Our studies reveal that inefficient completion of 8oxoG BER at telomeres triggers cellular senescence via SSB intermediates which impair telomere replication and stability.

3.
Nat Struct Mol Biol ; 29(7): 639-652, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35773409

RESUMEN

Oxidative stress is a primary cause of cellular senescence and contributes to the etiology of numerous human diseases. Oxidative damage to telomeric DNA has been proposed to cause premature senescence by accelerating telomere shortening. Here, we tested this model directly using a precision chemoptogenetic tool to produce the common lesion 8-oxo-guanine (8oxoG) exclusively at telomeres in human fibroblasts and epithelial cells. A single induction of telomeric 8oxoG is sufficient to trigger multiple hallmarks of p53-dependent senescence. Telomeric 8oxoG activates ATM and ATR signaling, and enriches for markers of telomere dysfunction in replicating, but not quiescent cells. Acute 8oxoG production fails to shorten telomeres, but rather generates fragile sites and mitotic DNA synthesis at telomeres, indicative of impaired replication. Based on our results, we propose that oxidative stress promotes rapid senescence by producing oxidative base lesions that drive replication-dependent telomere fragility and dysfunction in the absence of shortening and shelterin loss.


Asunto(s)
Guanina , Acortamiento del Telómero , Senescencia Celular/genética , ADN/metabolismo , Daño del ADN , Humanos , Estrés Oxidativo , Telómero/metabolismo
4.
Front Cell Dev Biol ; 9: 758402, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869348

RESUMEN

Telomeres are protective nucleoprotein structures that cap linear chromosome ends and safeguard genome stability. Progressive telomere shortening at each somatic cell division eventually leads to critically short and dysfunctional telomeres, which can contribute to either cellular senescence and aging, or tumorigenesis. Human reproductive cells, some stem cells, and most cancer cells, express the enzyme telomerase to restore telomeric DNA. Numerous studies have shown that oxidative stress caused by excess reactive oxygen species is associated with accelerated telomere shortening and dysfunction. Telomeric repeat sequences are remarkably susceptible to oxidative damage and are preferred sites for the production of the mutagenic base lesion 8-oxoguanine, which can alter telomere length homeostasis and integrity. Therefore, knowledge of the repair pathways involved in the processing of 8-oxoguanine at telomeres is important for advancing understanding of the pathogenesis of degenerative diseases and cancer associated with telomere instability. The highly conserved guanine oxidation (GO) system involves three specialized enzymes that initiate distinct pathways to specifically mitigate the adverse effects of 8-oxoguanine. Here we introduce the GO system and review the studies focused on investigating how telomeric 8-oxoguanine processing affects telomere integrity and overall genome stability. We also discuss newly developed technologies that target oxidative damage selectively to telomeres to investigate roles for the GO system in telomere stability.

5.
ACS Cent Sci ; 6(10): 1735-1742, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33145410

RESUMEN

The human DNA base excision repair enzyme MUTYH (MutY homolog DNA glycosylase) excises undamaged adenine that has been misincorporated opposite the oxidatively damaged 8-oxoG, preventing transversion mutations and serving as an important defense against the deleterious effects of this damage. Mutations in the MUTYH gene predispose patients to MUTYH-associated polyposis and colorectal cancer, and MUTYH expression has been documented as a biomarker for pancreatic cancer. Measuring MUTYH activity is therefore critical for evaluating and diagnosing disease states as well as for testing this enzyme as a potential therapeutic target. However, current methods for measuring MUTYH activity rely on indirect electrophoresis and radioactivity assays, which are difficult to implement in biological and clinical settings. Herein, we synthesize and identify novel fluorescent adenine derivatives that can act as direct substrates for excision by MUTYH as well as bacterial MutY. When incorporated into synthetic DNAs, the resulting fluorescently modified adenine-release turn-on (FMART) probes report on enzymatic base excision activity in real time, both in vitro and in mammalian cells and human blood. We also employ the probes to identify several promising small-molecule modulators of MUTYH by employing FMART probes for in vitro screening.

6.
Nucleic Acids Res ; 48(16): 8943-8958, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32697292

RESUMEN

The epithelial-to-mesenchymal transition (EMT) is a complex transcriptional program induced by transforming growth factor ß1 (TGF-ß1). Histone lysine-specific demethylase 1 (LSD1) has been recognized as a key mediator of EMT in cancer cells, but the precise mechanism that underlies the activation and repression of EMT genes still remains elusive. Here, we characterized the early events induced by TGF-ß1 during EMT initiation and establishment. TGF-ß1 triggered, 30-90 min post-treatment, a nuclear oxidative wave throughout the genome, documented by confocal microscopy and mass spectrometry, mediated by LSD1. LSD1 was recruited with phosphorylated SMAD2/3 to the promoters of prototypic genes activated and repressed by TGF-ß1. After 90 min, phospho-SMAD2/3 downregulation reduced the complex and LSD1 was then recruited with the newly synthesized SNAI1 and repressors, NCoR1 and HDAC3, to the promoters of TGF-ß1-repressed genes such as the Wnt soluble inhibitor factor 1 gene (WIF1), a change that induced a late oxidative burst. However, TGF-ß1 early (90 min) repression of transcription also required synchronous signaling by reactive oxygen species and the stress-activated kinase c-Jun N-terminal kinase. These data elucidate the early events elicited by TGF-ß1 and the priming role of DNA oxidation that marks TGF-ß1-induced and -repressed genes involved in the EMT.


Asunto(s)
ADN/metabolismo , Transición Epitelial-Mesenquimal/genética , Histona Demetilasas/fisiología , Proteína Smad2/fisiología , Factor de Crecimiento Transformador beta1/fisiología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos
7.
Biomolecules ; 10(3)2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32183138

RESUMEN

Tumor suppressor genes in the CDKN2A/B locus (p15INK4b, p16INK4a, and p14ARF) function as biological barriers to transformation and are the most frequently silenced or deleted genes in human cancers. This gene silencing frequently occurs due to DNA methylation of the promoter regions, although the underlying mechanism is currently unknown. We present evidence that methylation of p16INK4a promoter is associated with DNA damage caused by interference between transcription and replication processes. Inhibition of replication or transcription significantly reduces the DNA damage and CpGs methylation of the p16INK4a promoter. We conclude that de novo methylation of the promoter regions is dependent on local DNA damage. DNA methylation reduces the expression of p16INK4a and ultimately removes this barrier to oncogene-induced senescence.


Asunto(s)
Islas de CpG , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Metilación de ADN , Replicación del ADN , Regulación Neoplásica de la Expresión Génica , Regiones Promotoras Genéticas , Senescencia Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/biosíntesis , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Daño del ADN , Células HeLa , Humanos
8.
Sci Rep ; 9(1): 3925, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30850627

RESUMEN

We show that transcription induced by nuclear receptors for estrogen (E2) or retinoic acid (RA) is associated with formation of chromatin loops that juxtapose the 5' end (containing the promoter) with the enhancer and the 3' polyA addition site of the target gene. We find three loop configurations which change as a function of time after induction: 1. RA or E2-induced loops which connect the 5' end, the enhancer and the 3' end of the gene, and are stabilized by RNA early after induction; 2. E2-independent loops whose stability does not require RNA; 3. Loops detected only by treatment of chromatin with RNAse H1 prior to hormonal induction. RNAse H1 digests RNA that occludes the relevant restriction sites, thus preventing detection of these loops. R-loops at the 5' and 3' ends of the RA or E2-target genes were demonstrated by immunoprecipitation with anti-DNA-RNA hybrid antibodies as well as by sensitivity to RNAse H1. The cohesin RAD21 subunit is preferentially recruited to the target sites upon RA or E2 induction of transcription. RAD21 binding to chromatin is eliminated by RNAse H1. We identified E2-induced and RNase H1-sensitive antisense RNAs located at the 5' and 3' ends of the E2-induced transcription unit which stabilize the loops and RAD21 binding to chromatin. This is the first report of chromatin loops that form after gene induction that are maintained by RNA:DNA hybrids.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Estradiol/metabolismo , ARN/metabolismo , Tretinoina/metabolismo , Caspasa 9/genética , Caveolina 1/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , Estradiol/farmacología , Femenino , Humanos , Células MCF-7 , Modelos Biológicos , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-bcl-2/genética , ARN/genética , Estabilidad del ARN/efectos de los fármacos , Ribonucleasa H/metabolismo , Transcripción Genética/efectos de los fármacos , Tretinoina/farmacología
9.
Ann Neurol ; 85(2): 296-301, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30549309

RESUMEN

Easily accessible biomarkers in Huntington disease (HD) are actively searched. We investigated telomere length and DNA double-strand breaks (histone variant pγ-H2AX) as predictive disease biomarkers in peripheral blood mononuclear cells (PBMC) from 25 premanifest subjects, 58 HD patients with similar CAG expansion in the huntingtin gene (HTT), and 44 healthy controls (HC). PBMC from the pre-HD and HD groups showed shorter telomeres (p < 0.0001) and a significant increase of pγ-H2AX compared to the controls (p < 0.0001). The levels of pγ-H2AX correlated robustly with the presence of the mutated gene in pre-HD and HD. The availability of a potentially reversible biomarker (pγ-H2AX) in the premanifest stage of HD, negligible in HC, provides a novel tool to monitor premanifest subjects and find patient-specific drugs. Ann Neurol 2018;00:1-6 ANN NEUROL 2019;85:296-301.


Asunto(s)
Daño del ADN , Enfermedad de Huntington/metabolismo , Síntomas Prodrómicos , Telómero/metabolismo , Adulto , Anciano , Biomarcadores/metabolismo , Estudios de Casos y Controles , Femenino , Citometría de Flujo , Histonas/metabolismo , Humanos , Leucocitos Mononucleares , Masculino , Persona de Mediana Edad , Fosforilación , Adulto Joven
10.
J Clin Endocrinol Metab ; 98(6): E1031-40, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23543665

RESUMEN

CONTEXT: Histone deacetylase inhibitors (HDACis) are anticancer agents that inhibit tumor cell growth and/or survival. However, their mechanism of action remains largely undefined. Recently, we have demonstrated that HDACis induce apoptosis in a model of rat thyroid cells transformed by the v-ras-Ki oncogene (FRTL-5 v-ras-Ki). The stabilization of TNF-related apoptosis-inducing ligand (TRAIL) protein, due to its reduced ubiquitination and proteasome degradation, accounts for the apoptotic effect induced specifically by suberoylanilide hydroxamic acid (SAHA, Vorinostat) in the v-ras-Ki thyroid transformed cells. OBJECTIVE: The aim of this work was to investigate whether SAHA may induce its cytotoxic effects also deregulating microRNA (miRNA) expression levels. DESIGN: We analyzed the miRNA expression profile of the thyroid transformed cells, FRTL-5 v-ras-Ki, upon SAHA treatment. RESULTS: Here we report that SAHA induces the down-regulation of 18 and the up-regulation of 11 miRNAs with a fold change higher than 2 in the transformed cells. Then, we focus on the miR-146b and miR-200b, respectively up-regulated and down-regulated by SAHA. We show that both these miRNAs target genes coding for proteins with a critical role in proteasome composition and ubiquitin degradation. CONCLUSION: These results suggest a role of miRNA deregulation in TRAIL protein stabilization responsible for SAHA-induced apoptotic effect in thyroid transformed cells.


Asunto(s)
Antineoplásicos/farmacología , Genes ras , Inhibidores de Histona Desacetilasas/farmacología , MicroARNs/fisiología , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Humanos , Ácidos Hidroxámicos/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Ratas , Ligando Inductor de Apoptosis Relacionado con TNF/química , Glándula Tiroides/efectos de los fármacos , Vorinostat
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...