Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Toxicol In Vitro ; 88: 105560, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36681287

RESUMEN

Bioprospecting and synthesis of strategically designed molecules have been used in the search for drugs that can be in leishmaniasis. Hydrazones (HDZ) are promising compounds with extensive biological activities. The objective of this work was to perform in silico studies of hydrazones 1-5 and to evaluate their antileishmanial, cytotoxic and macrophage immunomodulatory potential in vitro. Hydrazones were subjected to prediction and molecular docking studies. Antileishmanial protocols on promastigotes and amastigotes of Leishmania amazonensis, cytotoxicity and macrophage immunomodulatory activity were performed. Hydrazones showed a good pharmacokinetic profile and hydrazone 3 and hydrazone 5 were classified as non-carcinogenic. Hydrazone 5 obtained the best conformation with trypanothione reductase. Hydrazone 1 and hydrazone 3 obtained the best mean inhibitory concentration (IC50) values for promastigotes, 4.4-61.96 µM and 8.0-58.75 µM, respectively. It also showed good activity on intramacrophagic amastigotes, with hydrazone 1 being the most active (IC50 = 6.79 µM) with selectivity index of 56. In cytotoxicity to macrophages hydrazone 3 was the most cytotoxic (CC50 = 256.3 ± 0,04 µM), while hydrazone 4 the least (CC50 = 1055.9 ± 0.03 µM). It can be concluded that the hydrazones revealed important pharmacokinetic and toxicological properties, in addition to antileishmania potential in reducing infection and infectivity in parasitized macrophages.


Asunto(s)
Antineoplásicos , Antiprotozoarios , Leishmania , Leishmaniasis , Humanos , Simulación del Acoplamiento Molecular , Hidrazonas/farmacología , Macrófagos , Leishmaniasis/tratamiento farmacológico , Antiprotozoarios/toxicidad , Antineoplásicos/uso terapéutico
2.
Toxicol In Vitro ; 87: 105524, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36435415

RESUMEN

Conventional treatments for leishmaniasis have caused serious adverse effects, poor tolerance, development of resistant strains. Natural products have been investigated as potential therapeutic alternatives. The cashew nut shell liquid (CNSL) is a natural source of phenolic compounds with several biological activities, where cardanol (CN) is considered one of the most important and promising compounds. This study aimed to evaluate antileishmanial, cytotoxic and immunomodulatory activities of CNSL and CN. Both showed antileishmanial potential, with IC50 for CNSL and CN against Leishmania infantum: 148.12 and 56.74 µg/mL; against Leishmania braziliensis: 85.71 and 64.28 µg/mL; against Leishmania major: 153.56 and 122.31 µg/mL, respectively. The mean cytotoxic concentrations (CC50) of CNSL and CN were 37.51 and 31.44 µg/mL, respectively. CNSL and CN significantly reduced the percentage of infected macrophages, with a selectivity index (SI) >20 for CN. CNSL and cardanol caused an increase in phagocytic capacity and lysosomal volume. Survival rates of Zophobas morio larvae at doses of 3; 30 and 300 mg/kg were: 85%, 75% and 60% in contact with CNSL and 85%, 60% and 40% in contact with CN, respectively. There was a significant difference between the survival curves of larvae when treated with CN, demonstrating a significant acute toxicity for this substance. Additional investigations are needed to evaluate these substances in the in vivo experimental infection model.


Asunto(s)
Anacardium , Antineoplásicos , Nueces , Fenoles/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...