Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Brain Behav Immun Health ; 40: 100817, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39188404

RESUMEN

Extreme preterm birth-associated adversities are a major risk factor for aberrant brain development, known as encephalopathy of prematurity (EoP), which can lead to long-term neurodevelopmental impairments. Although progress in clinical care for preterm infants has markedly improved perinatal outcomes, there are currently no curative treatment options available to combat EoP. EoP has a multifactorial etiology, including but not limited to pre- or postnatal immune activation and oxygen fluctuations. Elucidating the underlying mechanisms of EoP and determining the efficacy of potential therapies relies on valid, clinically translatable experimental models that reflect the neurodevelopmental and pathophysiological hallmarks of EoP. Here, we expand on our double-hit rat model that can be used to study EoP disease mechanisms and therapeutic options in a preclinical setting. Pregnant Wistar dams were intraperitoneally injected with 10 µg/kg LPS on embryonic day (E)20 and offspring was subjected to hypoxia (140 min, 8% O2) at postnatal day 4. Rats exposed to fetal inflammation and postnatal hypoxia (FIPH) showed neurodevelopmental impairments, such as reduced nest-seeking ability, ultrasonic vocalizations, social engagement, and working memory, and increased anxiety and sensitivity. Impairments in myelination, oligodendrocyte maturation and interneuron development were examined as hallmarks for EoP, in different layers and coordinates of the cortex using histological and molecular techniques. Myelin density and complexity was decreased in the cortex, which partially coincided with a decrease in mature oligodendrocytes. Furthermore, interneuron populations (GAD67+ and PVALB+) were affected. To determine if the timing of inducing fetal inflammation affected the severity of EoP hallmarks in the cortex, multiple timepoints of fetal inflammation were compared. Inflammation at E20 combined with postnatal hypoxia gave the most severe EoP phenotype in the cortex. In conclusion, we present a double-hit rat model which displays various behavioral, anatomical and molecular hallmarks of EoP, including diffuse white matter injury. This double-hit model can be used to investigate pathophysiological mechanisms and potential therapies for EoP.

2.
BMC Pediatr ; 24(1): 384, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849784

RESUMEN

BACKGROUND: Preterm born infants are at risk for brain injury and subsequent developmental delay. Treatment options are limited, but optimizing postnatal nutrition may improve brain- and neurodevelopment in these infants. In pre-clinical animal models, combined supplementation of docosahexaenoic acid (DHA), choline, and uridine-5-monophosphate (UMP) have shown to support neuronal membrane formation. In two randomized controlled pilot trials, supplementation with the investigational product was associated with clinically meaningful improvements in cognitive, attention, and language scores. The present study aims to assess the effect of a similar nutritional intervention on brain development and subsequent neurodevelopmental outcome in infants born very and extremely preterm. METHODS: This is a randomized, placebo-controlled, double-blinded, parallel-group, multi-center trial. A total of 130 infants, born at less than 30 weeks of gestation, will be randomized to receive a test or control product between term-equivalent age and 12 months corrected age (CA). The test product is a nutrient blend containing DHA, choline, and UMP amongst others. The control product contains only fractions of the active components. Both products are isocaloric powder supplements which can be added to milk and solid feeds. The primary outcome parameter is white matter integrity at three months CA, assessed using diffusion-tensor imaging (DTI) on MRI scanning. Secondary outcome parameters include volumetric brain development, cortical thickness, cortical folding, the metabolic and biochemical status of the brain, and product safety. Additionally, language, cognitive, motor, and behavioral development will be assessed at 12 and 24 months CA, using the Bayley Scales of Infant Development III and digital questionnaires (Dutch version of the Communicative Development Inventories (N-CDI), Ages and Stages Questionnaire 4 (ASQ-4), and Parent Report of Children's Abilities - Revised (PARCA-R)). DISCUSSION: The investigated nutritional intervention is hypothesized to promote brain development and subsequent neurodevelopmental outcome in preterm born infants who have an inherent risk of developmental delay. Moreover, this innovative study may give rise to new treatment possibilities and improvements in routine clinical care. TRIAL REGISTRATION: WHO International Clinical Trials Registry: NL-OMON56181 (registration assigned October 28, 2021).


Asunto(s)
Encéfalo , Colina , Suplementos Dietéticos , Ácidos Docosahexaenoicos , Uridina Monofosfato , Humanos , Lactante , Recién Nacido , Encéfalo/crecimiento & desarrollo , Encéfalo/diagnóstico por imagen , Desarrollo Infantil , Ácidos Docosahexaenoicos/administración & dosificación , Método Doble Ciego , Recien Nacido Extremadamente Prematuro/crecimiento & desarrollo , Recien Nacido Prematuro/crecimiento & desarrollo , Ensayos Clínicos Controlados Aleatorios como Asunto
3.
Int Rev Neurobiol ; 131: 263-287, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27793223

RESUMEN

Autism spectrum disorders (ASDs) are neurodevelopmental disorders, which occur in early childhood and persist into adulthood. Although the etiology of these disorders is largely unknown, genetic and environmental factors are thought to interplay in the development of ASD. Intestinal microbial dysbiosis, in prenatal and postnatal phases, is an important example of these environmental factors, and gastrointestinal problems including adverse reactions to foods are often reported in these children. In this review, we address the clinical and preclinical findings on the role of the intestinal microbiome in ASD and suggest possible underlying mechanisms. Furthermore, opportunities for (nutritional) interventions in ASD are provided.


Asunto(s)
Trastorno del Espectro Autista , Encéfalo/patología , Tracto Gastrointestinal/microbiología , Microbiota/fisiología , Trastorno del Espectro Autista/inmunología , Trastorno del Espectro Autista/microbiología , Trastorno del Espectro Autista/patología , Tracto Gastrointestinal/fisiopatología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...