Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
FEMS Microbiol Ecol ; 99(4)2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36941120

RESUMEN

There is a clear need for global monitoring initiatives to evaluate the risks of antibiotic resistance genes (ARGs) towards human health. Therefore, not only ARG abundances within a given environment, but also their potential mobility, hence their ability to spread to human pathogenic bacteria needs to be quantified. We developed a novel, sequencing-independent method for assessing the linkage of an ARG to a mobile genetic element by statistical analysis of multiplexed droplet digital PCR (ddPCR) carried out on environmental DNA sheared into defined, short fragments. This allows quantifying the physical linkage between specific ARGs and mobile genetic elements, here demonstrated for the sulfonamide ARG sul1 and the Class 1 integron integrase gene intI1. The method's efficiency is demonstrated using mixtures of model DNA fragments with either linked and unlinked target genes: Linkage of the two target genes can be accurately quantified based on high correlation coefficients between observed and expected values (R2) as well as low mean absolute errors (MAE) for both target genes, sul1 (R2 = 0.9997, MAE = 0.71%, n = 24) and intI1 (R2 = 0.9991, MAE = 1.14%, n = 24). Furthermore, we demonstrate that adjusting the fragmentation length of DNA during shearing allows controlling rates of false positives and false negative detection of linkage. The presented method allows rapidly obtaining reliable results in a labor- and cost-efficient manner.


Asunto(s)
Antibacterianos , Genes Bacterianos , Humanos , Antibacterianos/farmacología , Bacterias/genética , Farmacorresistencia Microbiana/genética , Reacción en Cadena de la Polimerasa
2.
ISME J ; 17(5): 775-785, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36854789

RESUMEN

Predation defense is an important feature of predator-prey interactions adding complexity to ecosystem dynamics. Prey organisms have developed various strategies to escape predation which differ in mode (elude vs. attack), reversibility (inducible vs. permanent), and scope (individual vs. cooperative defenses). While the mechanisms and controls of many singular defenses are well understood, important ecological and evolutionary facets impacting long-term predator-prey dynamics remain underexplored. This pertains especially to trade-offs and interactions between alternative defenses occurring in prey populations evolving under predation pressure. Here, we explored the dynamics of a microbial predator-prey system consisting of bacterivorous flagellates (Poteriospumella lacustris) feeding on Pseudomonas putida. Within five weeks of co-cultivation corresponding to about 35 predator generations, we observed a consistent succession of bacterial defenses in all replicates (n = 16). Initially, bacteria expressed a highly effective cooperative defense based on toxic metabolites, which brought predators close to extinction. This initial strategy, however, was consistently superseded by a second mechanism of predation defense emerging via de novo mutations. Combining experiments with mathematical modeling, we demonstrate how this succession of defenses is driven by the maximization of individual rather than population benefits, highlighting the role of rapid evolution in the breakdown of social cooperation.


Asunto(s)
Ecosistema , Conducta Predatoria , Animales , Modelos Biológicos , Modelos Teóricos , Dinámica Poblacional , Cadena Alimentaria
3.
Front Public Health ; 11: 1271594, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38425410

RESUMEN

Wastewater surveillance for SARS-CoV-2 has been demonstrated to be a valuable tool in monitoring community-level virus circulation and assessing new outbreaks. It may become a useful tool in the early detection and response to future pandemics, enabling public health authorities to implement timely interventions and mitigate the spread of infectious diseases with the fecal excretion of their agents. It also offers a chance for cost-effective surveillance. Reverse transcription-quantitative polymerase chain reaction (RTqPCR) is the most commonly used method for viral RNA detection in wastewater due to its sensitivity, reliability, and widespread availability. However, recent studies have indicated that reverse transcription droplet digital PCR (RTddPCR) has the potential to offer improved sensitivity and accuracy for quantifying SARS-CoV-2 RNA in wastewater samples. In this study, we compared the performance of RTqPCR and RTddPCR approaches for SARS-CoV-2 detection and quantification on wastewater samples collected during the third epidemic wave in Saxony, Germany, characterized by low-incidence infection periods. The determined limits of detection (LOD) and quantification (LOQ) were within the same order of magnitude, and no significant differences were observed between the PCR approaches with respect to the number of positive or quantifiable samples. Our results indicate that both RTqPCR and RTddPCR are highly sensitive methods for detecting SARS-CoV-2. Consequently, the actual gain in sensitivity associated with ddPCR lags behind theoretical expectations. Hence, the choice between the two PCR methods in further environmental surveillance programs is rather a matter of available resources and throughput requirements.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , ARN Viral , Reproducibilidad de los Resultados , SARS-CoV-2/genética , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales , Reacción en Cadena de la Polimerasa , Pandemias , Prueba de COVID-19
4.
Microbiol Spectr ; 10(2): e0041022, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35384690

RESUMEN

Multiwalled carbon nanotubes (MWCNTs) regularly enter aquatic environments due to their ubiquity in consumer products and engineering applications. However, the effects of MWCNT pollution on the environmental microbiome are poorly understood. Here, we evaluated whether these carbon nanoparticles can elevate the spread of antimicrobial resistance by promoting bacterial plasmid transfer, which has previously been observed for copper nanomaterials with antimicrobial properties as well as for microplastics. Through a combination of experimental liquid mating assays between Pseudomonas putida donor and recipient strains with plasmid pKJK5::gfpmut3b and mathematical modeling, we here demonstrate that the presence of MWCNTs leads to increased plasmid transfer rates in a concentration-dependent manner. The percentage of transconjugants per recipient significantly increased from 0.21 ± 0.04% in absence to 0.41 ± 0.09% at 10 mg L-1 MWCNTs. Similar trends were observed when using an Escherichia coli donor hosting plasmid pB10. The identified mechanism underlying the observed dynamics was the agglomeration of MWCNTs. A significantly increased number of particles with >6 µm diameter was detected in the presence of MWCNTs, which can in turn provide novel surfaces for bacterial interactions between donor and recipient cells after colonization. Fluorescence microscopy confirmed that MWCNT agglomerates were indeed covered in biofilms that contained donor bacteria as well as elevated numbers of green fluorescent transconjugant cells containing the plasmid. Consequently, MWCNTs provide bacteria with novel surfaces for intense cell-to-cell interactions in biofilms and can promote bacterial plasmid transfer, hence potentially elevating the spread of antimicrobial resistance. IMPORTANCE In recent decades, the use of carbon nanoparticles, especially multiwalled carbon nanotubes (MWCNTs), in a variety of products and engineering applications has been growing exponentially. As a result, MWCNT pollution into environmental compartments has been increasing. We here demonstrate that the exposure to MWCNTs can affect bacterial plasmid transfer rates in aquatic environments, an important process connected to the spread of antimicrobial resistance genes in microbial communities. This is mechanistically explained by the ability of MWCNTs to form bigger agglomerates, hence providing novel surfaces for bacterial interactions. Consequently, increasing pollution with MWCNTs has the potential to elevate the ongoing spread of antimicrobial resistance, a major threat to human health in the 21st century.


Asunto(s)
Nanotubos de Carbono , Antibacterianos/farmacología , Bacterias/genética , Escherichia coli/genética , Humanos , Plásmidos/genética , Plásticos/farmacología
5.
Pathogens ; 10(2)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673032

RESUMEN

Use of wastewater-based epidemiology as a tool to record and manage the course of SARS-CoV-2 infections in human populations requires information about the efficiency of methods to concentrate the virus from wastewater. In the present study, we spiked untreated wastewater with quantified SARS-CoV-2 positive clinical material and enriched the virus by polyethylene glycol precipitation and ultrafiltration with Vivaspin 10 kDa MWCO columns. SARS-CoV-2 was detected and quantified by reverse transcription quantitative PCR (E- and S-gene) and droplet digital PCR. The concentration of virus with precipitation resulted in mean recoveries between 59.4% and 63.7% whereas rates from 33.0% to 42.6% after ultrafiltration of samples were demonstrated. The results suggest that the use of both methods allows an effective and practicable enrichment of SARS-CoV-2 from raw wastewater.

6.
Front Microbiol ; 9: 1443, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30013540

RESUMEN

Aquatic ecosystems are frequently considered as the final receiving environments of anthropogenic pollutants such as pharmaceutical residues or antibiotic resistant bacteria, and as a consequence tend to form reservoirs of antibiotic resistance genes. Considering the global threat posed by the antibiotic resistance, the mechanisms involved in both the formation of such reservoirs and their remobilization are a concern of prime importance. Antibiotic resistance genes are strongly associated with mobile genetic elements that are directly involved in their dissemination. Most mobile genetic element-mediated gene transfers involve replicative mechanisms and, as such, localized gene transfers should participate in the local increase in resistance gene abundance. Additionally, the carriage of conjugative mobile elements encoding cell appendages acting as adhesins has already been demonstrated to increase biofilm-forming capability of bacteria and, therefore, should also contribute to their selective enrichment on surfaces. In the present study, we investigated the occurrence of two families of mobile genetic elements, IncP-1 plasmids and class 1 integrons, in the water column and bank sediments of the Orne River, in France. We show that these mobile elements, especially IncP-1 plasmids, are enriched in the bacteria attached on the suspended matters in the river waters, and that a similar abundance is found in freshly deposited sediments. Using the IncP-1 plasmid pB10 as a model, in vitro experiments demonstrated that local enrichment of plasmid-bearing bacteria on artificial surfaces mainly resulted from an increase in bacterial adhesion properties conferred by the plasmid rather than an improved dissemination frequency of the plasmid between surface-attached bacteria. We propose plasmid-mediated adhesion to particles to be one of the main contributors in the formation of mobile genetic element-reservoirs in sediments, with adhesion to suspended matter working as a selective enrichment process of antibiotic resistant genes and bacteria.

7.
Microb Ecol ; 73(1): 135-152, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27538875

RESUMEN

Water infiltration, soil carbon content, aggregate stability and yields increased in conservation agriculture practices compared to conventionally ploughed control treatments at the Henderson research station near Mazowe (Zimbabwe). How these changes in soil characteristics affect the bacterial community structure and the bacteria involved in the degradation of applied organic material remains unanswered. Soil was sampled from three agricultural systems at Henderson, i.e. (1) conventional mouldboard ploughing with continuous maize (conventional tillage), (2) direct seeding with a Fitarelli jab planter and continuous maize (direct seeding with continuous maize) and (3) direct seeding with a Fitarelli jab planter with rotation of maize sunn hemp (direct seeding with crop rotation). Soil was amended with young maize plants or their neutral detergent fibre (NDF) and incubated aerobically for 56 days, while C and N mineralization and the bacterial community structure were monitored. Bacillus (Bacillales), Micrococcaceae (Actinomycetales) and phylotypes belonging to the Pseudomonadales were first degraders of the applied maize plants. At day 3, Streptomyces (Actinomycetales), Chitinophagaceae ([Saprospirales]) and Dyella (Xanthomonadales) participated in the degradation of the applied maize and at day 7 Oxalobacteraceae (Burkholderiales). Phylotypes belonging to Halomonas (Oceanospirillales) were the first degraders of NDF and were replaced by Phenylobacterium (Caulobacterales) and phylotypes belonging to Pseudomonadales at day 3. Afterwards, similar bacterial groups were favoured by application of NDF as they were by the application of maize plants, but there were also clear differences. Phylotypes belonging to the Micrococcaceae and Bacillus did not participate in the degradation of NDF or its metabolic products, while phylotypes belonging to the Acidobacteriaceae participated in the degradation of NDF but not in that of maize plants. It was found that agricultural practices had a limited effect on the bacterial community structure, but application of organic material altered it substantially.


Asunto(s)
Bacterias/metabolismo , Carbono/metabolismo , Fertilizantes/análisis , Nitrógeno/metabolismo , Suelo/química , Zea mays/microbiología , Microbiota , Microbiología del Suelo , Zea mays/metabolismo , Zimbabwe
8.
Sci Total Environ ; 521-522: 1-10, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25828406

RESUMEN

Freshwater contamination usually comes from runoff water or direct wastewater discharges to the environment. This paper presents a case study which reveals the impact of these types of contamination on the sediment bacterial population. A small stretch of Lerma River Basin, heavily impacted by industrial activities and urban wastewater release, was studied. Due to industrial inputs, the sediments are characterized by strong hydrocarbon concentrations, ranging from 2 935 to 28 430µg·kg(-1) of total polyaromatic hydrocarbons (PAHs). These sediments are also impacted by heavy metals (e.g., 9.6µg·kg(-1) of Cd and 246µg·kg(-1) of Cu, about 8 times the maximum recommended values for environmental samples) and polychlorinated biphenyls (ranging from 54 to 123µg·kg(-1) of total PCBs). The bacterial diversity on 6 sediment samples, taken from upstream to downstream of the main industrial and urban contamination sources, was assessed through TRFLP. Even though the high PAH concentrations are hazardous to aquatic life, they are not the only factor driving bacterial community composition in this ecosystem. Urban discharges, leading to hypoxia and low pH, also strongly influenced bacterial community structure. The bacterial bioprospection of these samples, using PAH as unique carbon source, yielded 8 hydrocarbonoclastic strains. By sequencing the 16S rDNA gene, these were identified as similar to Mycobacterium goodii, Pseudomonas aeruginosa, Pseudomonas lundensis or Aeromonas veronii. These strains showed high capacity to degrade naphthalene (between 92 and 100% at 200mg·L(-1)), pyrene (up to 72% at 100mg·L(-1)) and/or fluoranthene (52% at 50mg·L(-1)) as their only carbon source on in vitro experiments. These hydrocarbonoclastic bacteria were detected even in the samples upstream of the city of Salamanca, suggesting chronical contamination, already in place longer before. Such microorganisms are clearly potential candidates for hydrocarbon degradation in the treatment of oil discharges.


Asunto(s)
Metales Pesados/toxicidad , Bifenilos Policlorados/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Monitoreo del Ambiente , Metales Pesados/análisis , México , Bifenilos Policlorados/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Ríos/química , Ríos/microbiología , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...