Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell ; 151(5): 932-4, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23178115

RESUMEN

Despite the profound impact of coronary artery disease on human health, the origins of the coronary blood vessels are poorly understood. Wu et al. use imaging and genetic techniques to show that the endocardium contributes to the coronary vessels and that the coronary arteries and veins have multilineage origins.

2.
Circ Res ; 108(7): 824-36, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21311046

RESUMEN

RATIONALE: The proepicardium is a transient structure comprising epicardial progenitor cells located at the posterior limit of the embryonic cardiac inflow. A network of signals regulates proepicardial cell fate and defines myocardial and nonmyocardial domains at the venous pole of the heart. During cardiac development, epicardial-derived cells also contribute to coronary vessel morphogenesis. OBJECTIVE: To study Notch function during proepicardium development and coronary vessel formation in the mouse. METHODS AND RESULTS: Using in situ hybridization, RT-PCR, and immunohistochemistry, we find that Notch pathway elements are differentially activated throughout the proepicardial-epicardial-coronary transition. Analysis of RBPJk-targeted embryos indicates that Notch ablation causes ectopic procardiogenic signaling in the proepicardium that in turn promotes myocardial differentiation in adjacent mesodermal progenitors, resulting in a premature muscularization of the sinus venosus horns. Epicardium-specific Notch1 ablation using a Wt1-Cre driver line disrupts coronary artery differentiation, reduces myocardium wall thickness and myocyte proliferation, and reduces Raldh2 expression. Ectopic Notch1 activation disrupts epicardium development and causes thinning of ventricular walls. CONCLUSIONS: Epicardial Notch modulates cell differentiation in the proepicardium and adjacent pericardial mesoderm. Notch1 is later required for arterial endothelium commitment and differentiation and for vessel wall maturation during coronary vessel development and myocardium growth.


Asunto(s)
Circulación Sanguínea/fisiología , Vasos Coronarios/embriología , Morfogénesis/fisiología , Pericardio/embriología , Receptores Notch/fisiología , Transducción de Señal/fisiología , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/fisiología , Animales , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/fisiología , Diferenciación Celular/fisiología , Proliferación Celular , Vasos Coronarios/citología , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/fisiología , Ratones , Ratones Endogámicos , Ratones Transgénicos , Modelos Animales , Mutación , Pericardio/citología , Receptor Notch1/genética , Receptor Notch1/fisiología , Receptores Notch/genética
3.
J Clin Invest ; 120(10): 3493-507, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20890042

RESUMEN

Cardiac valve formation is crucial for embryonic and adult heart function. Valve malformations constitute the most common congenital cardiac defect, but little is known about the molecular mechanisms regulating valve formation and homeostasis. Here, we show that endocardial Notch1 and myocardial Bmp2 signal integration establish a valve-forming field between 2 chamber developmental domains. Patterning occurs through the activation of endocardial epithelial-to-mesenchymal transition (EMT) exclusively in prospective valve territories. Mice with constitutive endocardial Notch1 activity ectopically express Hey1 and Heyl. They also display an activated mesenchymal gene program in ventricles and a partial (noninvasive) EMT in vitro that becomes invasive upon BMP2 treatment. Snail1, TGF-ß2, or Notch1 inhibition reduces BMP2-induced ventricular transformation and invasion, whereas BMP2 treatment inhibits endothelial Gsk3ß, stabilizing Snail1 and promoting invasiveness. Integration of Notch and Bmp2 signals is consistent with Notch1 signaling being attenuated after myocardial Bmp2 deletion. Notch1 activation in myocardium extends Hey1 expression to nonchamber myocardium, represses Bmp2, and impairs EMT. In contrast, Notch deletion abrogates endocardial Hey gene transcription and extends Bmp2 expression to the ventricular endocardium. This embryonic Notch1-Bmp2-Snail1 relationship may be relevant in adult valve disease, in which decreased NOTCH signaling causes valve mesenchyme cell formation, fibrosis, and calcification.


Asunto(s)
Proteína Morfogenética Ósea 2/fisiología , Válvulas Cardíacas/embriología , Mesodermo/metabolismo , Receptor Notch1/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/análisis , Proteínas de Ciclo Celular/análisis , Células Epiteliales/patología , Regulación del Desarrollo de la Expresión Génica , Humanos , Mesodermo/patología , Ratones , Proteínas Represoras/análisis , Transducción de Señal , Factores de Transcripción de la Familia Snail , Factores de Transcripción/fisiología , Factor de Crecimiento Transformador beta2/fisiología
4.
PLoS Genet ; 5(9): e1000662, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19779553

RESUMEN

Segmentation of the vertebrate body axis is initiated through somitogenesis, whereby epithelial somites bud off in pairs periodically from the rostral end of the unsegmented presomitic mesoderm (PSM). The periodicity of somitogenesis is governed by a molecular oscillator that drives periodic waves of clock gene expression caudo-rostrally through the PSM with a periodicity that matches somite formation. To date the clock genes comprise components of the Notch, Wnt, and FGF pathways. The literature contains controversial reports as to the absolute role(s) of Notch signalling during the process of somite formation. Recent data in the zebrafish have suggested that the only role of Notch signalling is to synchronise clock gene oscillations across the PSM and that somite formation can continue in the absence of Notch activity. However, it is not clear in the mouse if an FGF/Wnt-based oscillator is sufficient to generate segmented structures, such as the somites, in the absence of all Notch activity. We have investigated the requirement for Notch signalling in the mouse somitogenesis clock by analysing embryos carrying a mutation in different components of the Notch pathway, such as Lunatic fringe (Lfng), Hes7, Rbpj, and presenilin1/presenilin2 (Psen1/Psen2), and by pharmacological blocking of the Notch pathway. In contrast to the fish studies, we show that mouse embryos lacking all Notch activity do not show oscillatory activity, as evidenced by the absence of waves of clock gene expression across the PSM, and they do not develop somites. We propose that, at least in the mouse embryo, Notch activity is absolutely essential for the formation of a segmented body axis.


Asunto(s)
Relojes Biológicos , Organogénesis , Receptores Notch/metabolismo , Somitos/embriología , Somitos/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Tipificación del Cuerpo/genética , Embrión de Mamíferos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Glicosiltransferasas/deficiencia , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Ratones , Mutación/genética , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-2/genética , Presenilina-2/metabolismo , Proteínas Wnt/metabolismo
5.
Dev Dyn ; 236(9): 2594-614, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17685488

RESUMEN

Signaling through Notch receptors, which regulate cell fate decisions and embryonic patterning, requires ligand-induced receptor cleavage to generate the signaling active Notch intracellular domain (NICD). Here, we show an analysis at specific developmental stages of the distribution of active mouse Notch1. We use an antibody that recognizes N1ICD, and a highly sensitive staining technique. The earliest N1ICD expression was observed in the mesoderm and developing heart, where we detected expression in nascent endocardium, presumptive cardiac valves, and ventricular and atrial endocardium. During segmentation, N1ICD was restricted to the presomitic mesoderm. N1ICD expression was also evident in arterial endothelium, and in kidney and endodermal derivatives such as pancreas and thymus. Ectodermal N1ICD expression was found in central nervous system and sensory placodes. We found that Notch1 transcription and activity was severely reduced in zebrafish and mouse Notch pathway mutants, suggesting that vertebrate Notch1 expression is regulated by a positive feedback loop.


Asunto(s)
Retroalimentación Fisiológica , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Receptor Notch1/genética , Receptor Notch1/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología , Animales , Sistema Cardiovascular/embriología , Linaje de la Célula , Sistema Nervioso Central/embriología , Hematopoyesis , Ratones , Páncreas/embriología , Receptores Notch/metabolismo , Timo/embriología , Distribución Tisular , Pez Cebra
6.
Dev Cell ; 12(3): 415-29, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17336907

RESUMEN

Ventricular chamber morphogenesis, first manifested by trabeculae formation, is crucial for cardiac function and embryonic viability and depends on cellular interactions between the endocardium and myocardium. We show that ventricular Notch1 activity is highest at presumptive trabecular endocardium. RBPJk and Notch1 mutants show impaired trabeculation and marker expression, attenuated EphrinB2, NRG1, and BMP10 expression and signaling, and decreased myocardial proliferation. Functional and molecular analyses show that Notch inhibition prevents EphrinB2 expression, and that EphrinB2 is a direct Notch target acting upstream of NRG1 in the ventricles. However, BMP10 levels are found to be independent of both EphrinB2 and NRG1 during trabeculation. Accordingly, exogenous BMP10 rescues the myocardial proliferative defect of in vitro-cultured RBPJk mutants, while exogenous NRG1 rescues differentiation in parallel. We suggest that during trabeculation Notch independently regulates cardiomyocyte proliferation and differentiation, two exquisitely balanced processes whose perturbation may result in congenital heart disease.


Asunto(s)
Diferenciación Celular/fisiología , Corazón/embriología , Mioblastos Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proliferación Celular , Efrina-B2/genética , Efrina-B2/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/embriología , Ventrículos Cardíacos/metabolismo , Ratones , Mutación/genética , Mioblastos Cardíacos/citología , Miocitos Cardíacos/citología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neurregulina-1 , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptores Notch/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA