Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 59(15): 7138-51, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27385654

RESUMEN

There are currently no treatments for life-threatening infections caused by human polyomaviruses JCV and BKV. We therefore report herein the first crystal structure of the hexameric helicase of JCV large T antigen (apo) and its use to drive the structure-based design of dual JCV and BKV ATP-competitive inhibitors. The crystal structures obtained by soaking our early inhibitors into the JCV helicase allowed us to rapidly improve the biochemical activity of our inhibitors from 18 µM for the early 6-(2-methoxyphenyl)- and the 6-(2-ethoxyphenyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole hits 1a and 1b to 0.6 µM for triazolopyridine 12i. In addition, we were able to demonstrate measurable antiviral activity in Vero cells for our thiazolopyridine series in the absence of marked cytotoxicity, thus confirming the usefulness of this approach.


Asunto(s)
Virus BK/enzimología , ADN Helicasas/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Virus JC/enzimología , ADN Helicasas/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
2.
Proteins ; 84(3): 383-96, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26757175

RESUMEN

Cytochrome P450 BM3 (CYP102A1) mutant M11 is able to metabolize a wide range of drugs and drug-like compounds. Among these, M11 was recently found to be able to catalyze formation of human metabolites of mefenamic acid and other nonsteroidal anti-inflammatory drugs (NSAIDs). Interestingly, single active-site mutations such as V87I were reported to invert regioselectivity in NSAID hydroxylation. In this work, we combine crystallography and molecular simulation to study the effect of single mutations on binding and regioselective metabolism of mefenamic acid by M11 mutants. The heme domain of the protein mutant M11 was expressed, purified, and crystallized, and its X-ray structure was used as template for modeling. A multistep approach was used that combines molecular docking, molecular dynamics (MD) simulation, and binding free-energy calculations to address protein flexibility. In this way, preferred binding modes that are consistent with oxidation at the experimentally observed sites of metabolism (SOMs) were identified. Whereas docking could not be used to retrospectively predict experimental trends in regioselectivity, we were able to rank binding modes in line with the preferred SOMs of mefenamic acid by M11 and its mutants by including protein flexibility and dynamics in free-energy computation. In addition, we could obtain structural insights into the change in regioselectivity of mefenamic acid hydroxylation due to single active-site mutations. Our findings confirm that use of MD and binding free-energy calculation is useful for studying biocatalysis in those cases in which enzyme binding is a critical event in determining the selective metabolism of a substrate.


Asunto(s)
Bacillus megaterium/enzimología , Proteínas Bacterianas/química , Sistema Enzimático del Citocromo P-450/química , Ácido Mefenámico/química , Dominio Catalítico , Cristalografía por Rayos X , Hemo/química , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación Missense , Unión Proteica , Estructura Secundaria de Proteína , Termodinámica
3.
Structure ; 18(9): 1083-93, 2010 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-20826335

RESUMEN

Dysregulation of the calcitonin gene-related peptide (CGRP), a potent vasodilator, is directly implicated in the pathogenesis of migraine. CGRP binds to and signals through the CGRP receptor (CGRP-R), a heterodimer containing the calcitonin receptor-like receptor (CLR), a class B GPCR, and RAMP1, a receptor activity-modifying protein. We have solved the crystal structure of the CLR/RAMP1 N-terminal ectodomain heterodimer, revealing how RAMPs bind to and potentially modulate the activities of the CLR GPCR subfamily. We also report the structures of CLR/RAMP1 in complex with the clinical receptor antagonists olcegepant (BIBN4096BS) and telcagepant (MK0974). Both drugs act by blocking access to the peptide-binding cleft at the interface of CLR and RAMP1. These structures illustrate, for the first time, how small molecules bind to and modulate the activity of a class B GPCR, and highlight the challenges of designing potent receptor antagonists for the treatment of migraine and other class B GPCR-related diseases.


Asunto(s)
Azepinas/química , Imidazoles/química , Piperazinas/química , Quinazolinas/química , Receptores de Péptido Relacionado con el Gen de Calcitonina/química , Azepinas/farmacología , Sitios de Unión , Péptido Relacionado con Gen de Calcitonina/química , Péptido Relacionado con Gen de Calcitonina/metabolismo , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina , Proteína Similar al Receptor de Calcitonina/química , Proteína Similar al Receptor de Calcitonina/metabolismo , Cristalografía por Rayos X , Imidazoles/farmacología , Piperazinas/farmacología , Estructura Terciaria de Proteína , Quinazolinas/farmacología , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo
5.
J Med Chem ; 52(20): 6362-8, 2009 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-19827834

RESUMEN

The Ras/Raf/MEK/ERK signal transduction, an oncogenic pathway implicated in a variety of human cancers, is a key target in anticancer drug design. A novel series of pyrimidylpyrrole ERK inhibitors has been identified. Discovery of a conformational change for lead compound 2, when bound to ERK2 relative to antitarget GSK3, enabled structure-guided selectivity optimization, which led to the discovery of 11e, a potent, selective, and orally bioavailable inhibitor of ERK.


Asunto(s)
Diseño de Fármacos , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Conformación Molecular , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Pirroles/química , Pirroles/farmacología , Quinasas MAP Reguladas por Señal Extracelular/química , Modelos Moleculares , Especificidad por Sustrato
6.
Bioorg Med Chem Lett ; 18(23): 6231-5, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-18938080
7.
J Med Chem ; 48(4): 1278-81, 2005 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-15715498

RESUMEN

Aryl CH hydrogen bonds play an important role in the binding of several analogues of a pyrazol-3-ylquinazolin-4-ylamine inhibitor of glycogen synthase kinase 3 (GSK3). Understanding the importance of these CH...O and CH...N hydrogen bonds allowed the design of a novel quinazolin-4-ylthiazol-2-ylamine inhibitor of GSK3 with a structurally confirmed CH...O hydrogen bond to the protein.


Asunto(s)
Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/química , Quinazolinas/síntesis química , Tiazoles/síntesis química , Diseño de Fármacos , Enlace de Hidrógeno , Isomerismo , Ligandos , Modelos Moleculares , Conformación Molecular , Quinazolinas/química , Relación Estructura-Actividad , Tiazoles/química
8.
Structure ; 11(6): 611-2, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12791249

RESUMEN

The crystal structures of MAP KAP kinase 2 in complex with ADP and staurosporine suggest a major reorganization of the glycine-rich loop upon ligand binding. The main determinant for the catalytic activity of MAP KAP kinase 2 is phosphorylation by p38 MAP kinase.


Asunto(s)
Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Adenosina Difosfato/metabolismo , Animales , Activación Enzimática , Péptidos y Proteínas de Señalización Intracelular , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estructura Terciaria de Proteína , Estaurosporina/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos
9.
J Biol Chem ; 277(40): 37401-5, 2002 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-12171911

RESUMEN

MAPK-activated protein kinase 2 (MAPKAPK2), one of several kinases directly phosphorylated and activated by p38 MAPK, plays a central role in the inflammatory response. The activated MAPKAPK2 phosphorylates its nuclear targets CREB/ATF1, serum response factor, and E2A protein E47 and its cytoplasmic targets HSP25/27, LSP-1, 5-lipoxygenase, glycogen synthase, and tyrosine hydroxylase. The crystal structure of unphosphorylated MAPKAPK2, determined at 2.8 A resolution, includes the kinase domain and the C-terminal regulatory domain. Although the protein is inactive, the kinase domain adopts an active conformation with aspartate 366 mimicking the missing phosphorylated threonine 222 in the activation loop. The C-terminal regulatory domain forms a helix-turn-helix plus a long strand. Phosphorylation of threonine 334, which is located between the kinase domain and the C-terminal regulatory domain, may serve as a switch for MAPKAPK2 nuclear import and export. Phosphorylated MAPKAPK2 masks the nuclear localization signal at its C terminus by binding to p38. It unmasks the nuclear export signal, which is part of the second C-terminal helix packed along the surface of kinase domain C-lobe, and thereby carries p38 to the cytoplasm.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Activación Enzimática , Humanos , Péptidos y Proteínas de Señalización Intracelular , Modelos Moleculares , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Estructura Secundaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...