Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biol Psychiatry ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38490366

RESUMEN

BACKGROUND: Pathogenic variants in STXBP1/MUNC18-1 cause severe encephalopathies that are among the most common in genetic neurodevelopmental disorders. Different molecular disease mechanisms have been proposed, and pathogenicity prediction is limited. In this study, we aimed to define a generalized disease concept for STXBP1-related disorders and improve prediction. METHODS: A cohort of 11 disease-associated and 5 neutral variants (detected in healthy individuals) were tested in 3 cell-free assays and in heterologous cells and primary neurons. Protein aggregation was tested using gel filtration and Triton X-100 insolubility. PRESR (predicting STXBP1-related disorder), a machine learning algorithm that uses both sequence- and 3-dimensional structure-based features, was developed to improve pathogenicity prediction using 231 known disease-associated variants and comparison to our experimental data. RESULTS: Disease-associated variants, but none of the neutral variants, produced reduced protein levels. Cell-free assays demonstrated directly that disease-associated variants have reduced thermostability, with most variants denaturing around body temperature. In addition, most disease-associated variants impaired SNARE-mediated membrane fusion in a reconstituted assay. Aggregation/insolubility was observed for none of the variants in vitro or in neurons. PRESR outperformed existing tools substantially: Matthews correlation coefficient = 0.71 versus <0.55. CONCLUSIONS: These data establish intrinsic protein instability as the generalizable, primary cause for STXBP1-related disorders and show that protein-specific ortholog and 3-dimensional information improve disease prediction. PRESR is a publicly available diagnostic tool.

2.
J Neurosci ; 43(3): 347-358, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36517239

RESUMEN

The presynaptic proteins MUNC18-1, syntaxin-1, and SNAP25 drive SNARE-mediated synaptic vesicle fusion and are also required for neuronal viability. Their absence triggers rapid, cell-autonomous, neuron-specific degeneration, unrelated to synaptic vesicle deficits. The underlying cell death pathways remain poorly understood. Here, we show that hippocampi of munc18-1 null mice (unknown sex) express apoptosis hallmarks cleaved caspase 3 (CC-3) and phosphorylated p53, and have condensed nuclei. However, side-by-side in vitro comparison with classical apoptosis induced by camptothecin uncovered striking differences to syntaxin-1 and MUNC18-1 depleted neurons. First, live-cell imaging revealed consecutive neurite retraction hours before cell death in MUNC18-1 or syntaxin-1 depleted neurons, whereas all neurites retracted at once, directly before cell death in classical apoptosis. Second, CC-3 activation was observed only after loss of all neurites and cellular breakdown, whereas CC-3 is activated before any neurite loss in classical apoptosis. Third, a pan-caspase inhibitor and a p53 inhibitor both arrested classical apoptosis, as expected, but not cell death in MUNC18-1 or syntaxin-1 depleted neurons. Neuron-specific cell death, consecutive neurite retraction, and late CC-3 activation were conserved in syntaxin-1 depleted human neurons. Finally, no indications were observed for involvement of other established cell death pathways, including necroptosis, Wallerian degeneration, autophagic cell death, and pyroptosis. Together, these data show that depletion of presynaptic proteins MUNC18-1 or syntaxin-1 triggers an atypical, staged cell death pathway characterized by consecutive neurite retraction, ultimately leading to, but not driven by, apoptosis.SIGNIFICANCE STATEMENT Neuronal cell death can occur via a multitude of pathways and plays an important role in the developing nervous system as well as neurodegenerative diseases. One poorly understood pathway to neuronal cell death takes place on depletion of presynaptic SNARE proteins syntaxin-1, SNAP25, or MUNC18-1. The current study demonstrates that MUNC18-1 or syntaxin-1 depleted neurons show a new, atypical, staged cell death that does not resemble any of the established cell death pathways in neurons. Cell death on MUNC18-1 or syntaxin-1 depletion is characterized by consecutive neurite retraction, ultimately involving, but not driven by, classical apoptosis.


Asunto(s)
Proteínas SNARE , Proteína p53 Supresora de Tumor , Ratones , Animales , Humanos , Sintaxina 1/genética , Proteínas SNARE/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Muerte Celular , Ratones Noqueados , Unión Proteica
3.
Mol Psychiatry ; 28(4): 1545-1556, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36385170

RESUMEN

Studies using induced pluripotent stem cells (iPSCs) are gaining momentum in brain disorder modelling, but optimal study designs are poorly defined. Here, we compare commonly used designs and statistical analysis for different research aims. Furthermore, we generated immunocytochemical, electrophysiological, and proteomic data from iPSC-derived neurons of five healthy subjects, analysed data variation and conducted power simulations. These analyses show that published case-control iPSC studies are generally underpowered. Designs using isogenic iPSC lines typically have higher power than case-control designs, but generalization of conclusions is limited. We show that, for the realistic settings used in this study, a multiple isogenic pair design increases absolute power up to 60% or requires up to 5-fold fewer lines. A free web tool is presented to explore the power of different study designs, using any (pilot) data.


Asunto(s)
Encefalopatías , Células Madre Pluripotentes Inducidas , Humanos , Proteómica , Estudios de Casos y Controles , Voluntarios Sanos
4.
Exp Neurol ; 339: 113594, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33450233

RESUMEN

Regeneration capacity is reduced as CNS axons mature. Using laser-mediated axotomy, proteomics and puromycin-based tagging of newly-synthesized proteins in a human embryonic stem cell-derived neuron culture system that allows isolation of axons from cell bodies, we show here that efficient regeneration in younger axons (d45 in culture) is associated with local axonal protein synthesis (local translation). Enhanced regeneration, promoted by co-culture with human glial precursor cells, is associated with increased axonal synthesis of proteins, including those constituting the translation machinery itself. Reduced regeneration, as occurs with the maturation of these axons by d65 in culture, correlates with reduced levels of axonal proteins involved in translation and an inability to respond by increased translation of regeneration promoting axonal mRNAs released from stress granules. Together, our results provide evidence that, as in development and in the PNS, local translation contributes to CNS axon regeneration.


Asunto(s)
Axones/fisiología , Senescencia Celular/fisiología , Células Madre Embrionarias/fisiología , Regeneración Nerviosa/fisiología , Biosíntesis de Proteínas/fisiología , Técnicas de Cocultivo , Humanos
5.
Front Physiol ; 12: 775172, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35002760

RESUMEN

STXBP1 syndrome is a rare neurodevelopmental disorder caused by heterozygous variants in the STXBP1 gene and is characterized by psychomotor delay, early-onset developmental delay, and epileptic encephalopathy. Pathogenic STXBP1 variants are thought to alter excitation-inhibition (E/I) balance at the synaptic level, which could impact neuronal network dynamics; however, this has not been investigated yet. Here, we present the first EEG study of patients with STXBP1 syndrome to quantify the impact of the synaptic E/I dysregulation on ongoing brain activity. We used high-frequency-resolution analyses of classical and recently developed methods known to be sensitive to E/I balance. EEG was recorded during eyes-open rest in children with STXBP1 syndrome (n = 14) and age-matched typically developing children (n = 50). Brain-wide abnormalities were observed in each of the four resting-state measures assessed here: (i) slowing of activity and increased low-frequency power in the range 1.75-4.63 Hz, (ii) increased long-range temporal correlations in the 11-18 Hz range, (iii) a decrease of our recently introduced measure of functional E/I ratio in a similar frequency range (12-24 Hz), and (iv) a larger exponent of the 1/f-like aperiodic component of the power spectrum. Overall, these findings indicate that large-scale brain activity in STXBP1 syndrome exhibits inhibition-dominated dynamics, which may be compensatory to counteract local circuitry imbalances expected to shift E/I balance toward excitation, as observed in preclinical models. We argue that quantitative EEG investigations in STXBP1 and other neurodevelopmental disorders are a crucial step to understand large-scale functional consequences of synaptic E/I perturbations.

6.
J Neurochem ; 157(3): 450-466, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33259669

RESUMEN

Loss of the exocytic Sec1/MUNC18 protein MUNC18-1 or its target-SNARE partners SNAP25 and syntaxin-1 results in rapid, cell-autonomous and unexplained neurodegeneration, which is independent of their known role in synaptic vesicle exocytosis. cis-Golgi abnormalities are the earliest cellular phenotypes before degeneration occurs. Here, we investigated whether loss of MUNC18-1 causes defects in intracellular membrane transport pathways in primary murine neurons that may explain neurodegeneration. Electron, confocal and super resolution microscopy confirmed that loss of MUNC18-1 expression results in a smaller cis-Golgi. In addition, we now show that medial-Golgi and the trans-Golgi Network are also affected. However, stacking and cisternae ultrastructure of the Golgi were normal. Overall, ultrastructure of null mutant neurons was remarkably normal just hours before cell death occurred. By synchronizing protein trafficking by conditional cargo retention in the endoplasmic reticulum using selective hooks (RUSH) and immunocytochemistry, we show that anterograde Endoplasmic Reticulum-to-Golgi and Golgi exit of endogenous and exogenous proteins were normal. In contrast, loss of MUNC18-1 caused reduced retrograde Cholera Toxin B-subunit transport from the plasma membrane to the Golgi. In addition, MUNC18-1-deficiency resulted in abnormalities in retrograde TrkB trafficking in an antibody uptake assay. We conclude that MUNC18-1 deficient neurons have normal anterograde but reduced retrograde transport to the Golgi. The impairments in retrograde pathways suggest a role of MUNC18-1 in endosomal SNARE-dependent fusion and provide a plausible explanation for the observed Golgi abnormalities and cell death in MUNC18-1 deficient neurons.


Asunto(s)
Transporte Biológico/genética , Proteínas Munc18/deficiencia , Proteínas Munc18/genética , Animales , Muerte Celular , Membrana Celular/metabolismo , Células Cultivadas , Toxina del Cólera/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/patología , Aparato de Golgi/ultraestructura , Inmunohistoquímica , Membranas Intracelulares/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Redes y Vías Metabólicas/genética , Ratones , Ratones Noqueados , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/patología , Neuronas/ultraestructura , Proteínas SNARE/deficiencia , Proteínas SNARE/genética
7.
Brain ; 143(2): 441-451, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31855252

RESUMEN

Heterozygous mutations in the STXBP1 gene encoding the presynaptic protein MUNC18-1 cause STXBP1 encephalopathy, characterized by developmental delay, intellectual disability and epilepsy. Impaired mutant protein stability leading to reduced synaptic transmission is considered the main underlying pathogenetic mechanism. Here, we report the first two cases carrying a homozygous STXBP1 mutation, where their heterozygous siblings and mother are asymptomatic. Both cases were diagnosed with Lennox-Gastaut syndrome. In Munc18-1 null mouse neurons, protein stability of the disease variant (L446F) is less dramatically affected than previously observed for heterozygous disease mutants. Neurons expressing Munc18L446F showed minor changes in morphology and synapse density. However, patch clamp recordings demonstrated that L446F causes a 2-fold increase in evoked synaptic transmission. Conversely, paired pulse plasticity was reduced and recovery after stimulus trains also. Spontaneous release frequency and amplitude, the readily releasable vesicle pool and the kinetics of short-term plasticity were all normal. Hence, the homozygous L446F mutation causes a gain-of-function phenotype regarding release probability and synaptic transmission while having less impact on protein levels than previously reported (heterozygous) mutations. These data show that STXBP1 mutations produce divergent cellular effects, resulting in different clinical features, while sharing the overarching encephalopathic phenotype (developmental delay, intellectual disability and epilepsy).


Asunto(s)
Encefalopatías/genética , Mutación con Ganancia de Función/genética , Proteínas Munc18/genética , Transmisión Sináptica/genética , Animales , Epilepsia/genética , Epilepsia/fisiopatología , Discapacidad Intelectual/genética , Ratones Noqueados
8.
Epilepsy Behav ; 87: 69-77, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30173019

RESUMEN

The ketogenic diet (KD) has been found to be effective in reducing seizures in patients with treatment-refractory epilepsy. Less attention has been paid to additional cognitive benefits of KD. The aim of the present paper was to provide a comprehensive overview of the studies reporting effects on cognition after KD treatment in adults and children with epilepsy. To address this aim, the clinical literature on cognitive effects of KD in patients with epilepsy was reviewed using a systematic approach. We conclude that using subjective assessments of the patient's experience, cognitive improvements are frequently reported during KD treatment in the domains of alertness, attention, and global cognition. Studies that used objective neuropsychological tests confirmed benefits on alertness but found no improvement in global cognition. There are indications that these improvements are caused by both seizure reduction and direct effects of KD on cognition. The improvements appear to be unrelated to medication reduction, age when KD is started, type of KD, and sleep improvement. The findings in the present overview contribute to a better understanding of the beneficial effects of KD in patients with epilepsy.


Asunto(s)
Disfunción Cognitiva/dietoterapia , Dieta Cetogénica , Epilepsia Refractaria/dietoterapia , Evaluación de Resultado en la Atención de Salud , Disfunción Cognitiva/etiología , Epilepsia Refractaria/complicaciones , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA