Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38775637

RESUMEN

OBJECTIVES: Autoreactive memory B cells contribute to chronic and progressive courses in autoimmune diseases like systemic lupus erythematosus (SLE). The efficacy of belimumab (BEL), the first approved biologic treatment for SLE and lupus nephritis (LN), is generally attributed to depletion of activated naïve B cells and inhibition of B cell activation. BEL's effect on memory B cells (MBCs) is currently unexplained. We performed an in-depth cellular and transcriptomic analysis of BEL's impact on the blood MBC compartment in patients with SLE. METHODS: A retrospective meta-analysis was conducted, pooling flow cytometry data from four randomized trials involving 1245 patients with SLE treated with intravenous BEL or placebo. Then, extensive MBC phenotyping was performed using high-sensitivity flow cytometry in patients with mild/moderate SLE and severe SLE/LN treated with subcutaneous BEL. Finally, transcriptomic characterization of surging MBCs was performed by single-cell RNA sequencing. RESULTS: In BEL-treated patients, a significant increase in circulating MBCs, in a broad range of MBC subsets, was established at week 2, gradually returning to baseline by week 52. The increase was most prominent in patients with higher SLE disease activity, serologically active patients, and patients aged ≤18 years. MBCs had a non-proliferating phenotype with a prominent decrease in activation status and downregulation of numerous migration genes. CONCLUSION: Upon BEL initiation, an increase of MBCs was firmly established. In the small cohort investigated, circulating MBCs were de-activated, non-proliferative, and demonstrated characteristics of disrupted lymphocyte trafficking, expanding on our understanding of the therapeutic mechanism of B cell-activating factor inhibition by BEL. TRIAL REGISTRATION: ClinicalTrials.gov NCT00071487, NCT00410384, NCT01632241, NCT01649765, NCT03312907, NCT03747159.

3.
NPJ Precis Oncol ; 8(1): 105, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762545

RESUMEN

The diagnostic spectrum for AML patients is increasingly based on genetic abnormalities due to their prognostic and predictive value. However, information on the AML blast phenotype regarding their maturational arrest has started to regain importance due to its predictive power for drug responses. Here, we deconvolute 1350 bulk RNA-seq samples from five independent AML cohorts on a single-cell healthy BM reference and demonstrate that the morphological differentiation stages (FAB) could be faithfully reconstituted using estimated cell compositions (ECCs). Moreover, we show that the ECCs reliably predict ex-vivo drug resistances as demonstrated for Venetoclax, a BCL-2 inhibitor, resistance specifically in AML with CD14+ monocyte phenotype. We validate these predictions using LUMC proteomics data by showing that BCL-2 protein abundance is split into two distinct clusters for NPM1-mutated AML at the extremes of CD14+ monocyte percentages, which could be crucial for the Venetoclax dosing patients. Our results suggest that Venetoclax resistance predictions can also be extended to AML without recurrent genetic abnormalities and possibly to MDS-related and secondary AML. Lastly, we show that CD14+ monocytic dominated Ven/Aza treated patients have significantly lower overall survival. Collectively, we propose a framework for allowing a joint mutation and maturation stage modeling that could be used as a blueprint for testing sensitivity for new agents across the various subtypes of AML.

4.
Leukemia ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744919

RESUMEN

Minimal/measurable residual disease (MRD) diagnostics using real-time quantitative PCR analysis of rearranged immunoglobulin and T-cell receptor gene rearrangements are nowadays implemented in most treatment protocols for patients with acute lymphoblastic leukemia (ALL). Within the EuroMRD Consortium, we aim to provide comparable, high-quality MRD diagnostics, allowing appropriate risk-group classification for patients and inter-protocol comparisons. To this end, we set up a quality assessment scheme, that was gradually optimized and updated over the last 20 years, and that now includes participants from around 70 laboratories worldwide. We here describe the design and analysis of our quality assessment scheme. In addition, we here report revised data interpretation guidelines, based on our newly generated data and extensive discussions between experts. The main novelty is the partial re-definition of the "positive below quantitative range" category by two new categories, "MRD low positive, below quantitative range" and "MRD of uncertain significance". The quality assessment program and revised guidelines will ensure reproducible and accurate MRD data for ALL patients. Within the Consortium, similar programs and guidelines have been introduced for other lymphoid diseases (e.g., B-cell lymphoma), for new technological platforms (e.g., digital droplet PCR or Next-Generation Sequencing), and for other patient-specific MRD PCR-based targets (e.g., fusion genes).

5.
Cell Rep Methods ; 4(3): 100716, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38430913

RESUMEN

Oncolytic virus (OV) clinical trials have demonstrated remarkable efficacy in subsets of patients with glioblastoma (GBM). However, the lack of tools to predict this response hinders the advancement of a more personalized application of OV therapy. In this study, we characterize an ex vivo co-culture system designed to examine the immune response to OV infection of patient-derived GBM neurospheres in the presence of autologous peripheral blood mononuclear cells (PBMCs). Co-culture conditions were optimized to retain viability and functionality of both tumor cells and PBMCs, effectively recapitulating the well-recognized immunosuppressive effects of GBM. Following OV infection, we observed elevated secretion of pro-inflammatory cytokines and chemokines, including interferon γ, tumor necrosis factor α, CXCL9, and CXCL10, and marked changes in immune cell activation markers. Importantly, OV treatment induced unique patient-specific immune responses. In summary, our co-culture platform presents an avenue for personalized screening of viro-immunotherapies in GBM, offering promise as a potential tool for future patient stratification in OV therapy.


Asunto(s)
Glioblastoma , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Leucocitos Mononucleares/patología , Inmunoterapia
6.
Haematologica ; 109(2): 521-532, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37534527

RESUMEN

Diagnostic criteria for juvenile myelomonocytic leukemia (JMML) are currently well defined, however in some patients diagnosis still remains a challenge. Flow cytometry is a well established tool for diagnosis and follow-up of hematological malignancies, nevertheless it is not routinely used for JMML diagnosis. Herewith, we characterized the CD34+ hematopoietic precursor cells collected from 31 children with JMML using a combination of standardized EuroFlow antibody panels to assess the ability to discriminate JMML cells from normal/reactive bone marrow cell as controls (n=29) or from cells of children with other hematological diseases mimicking JMML (n=9). CD34+ precursors in JMML showed markedly reduced B-cell and erythroid-committed precursors compared to controls, whereas monocytic and CD7+ lymphoid precursors were significantly expanded. Moreover, aberrant immunophenotypes were consistently present in CD34+ precursors in JMML, while they were virtually absent in controls. Multivariate logistic regression analysis showed that combined assessment of the number of CD34+CD7+ lymphoid precursors and CD34+ aberrant precursors or erythroid precursors had a great potential in discriminating JMMLs versus controls. Importantly our scoring model allowed highly efficient discrimination of truly JMML versus patients with JMML-like diseases. In conclusion, we show for the first time that CD34+ precursors from JMML patients display a unique immunophenotypic profile which might contribute to a fast and accurate diagnosis of JMML worldwide by applying an easy to standardize single eight-color antibody combination.


Asunto(s)
Leucemia Mielomonocítica Juvenil , Niño , Humanos , Leucemia Mielomonocítica Juvenil/diagnóstico , Leucemia Mielomonocítica Juvenil/genética , Citometría de Flujo , Antígenos CD34/genética , Monocitos/patología
7.
Front Immunol ; 14: 1285088, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38035080

RESUMEN

Introduction: Good syndrome (GS) is a rare adult-onset immunodeficiency first described in 1954. It is characterized by the coexistence of a thymoma and hypogammaglobulinemia, associated with an increased susceptibility to infections and autoimmunity. The classification and management of GS has been long hampered by the lack of data about the underlying immune alterations, a controversy existing on whether it is a unique diagnostic entity vs. a subtype of Common Variable Immune Deficiency (CVID). Methods: Here, we used high-sensitive flow cytometry to investigate the distribution of up to 70 different immune cell populations in blood of GS patients (n=9) compared to age-matched CVID patients (n=55) and healthy donors (n=61). Results: All 9 GS patients displayed reduced B-cell counts -down to undetectable levels (<0.1 cells/µL) in 8/9 cases-, together with decreased numbers of total CD4+ T-cells, NK-cells, neutrophils, and basophils vs. age-matched healthy donors. In contrast, they showed expanded TCRγδ+ T-cells (p ≤ 0.05). Except for a deeper B-cell defect, the pattern of immune cell alteration in blood was similar in GS and (age-matched) CVID patients. In depth analysis of CD4+ T-cells revealed significantly decreased blood counts of naïve, central memory (CM) and transitional memory (TM) TCD4+ cells and their functional compartments of T follicular helper (TFH), regulatory T cells (Tregs), T helper (Th)2, Th17, Th22, Th1/Th17 and Th1/Th2 cells. In addition, GS patients also showed decreased NK-cell, neutrophil, basophil, classical monocyte and of both CD1c+ and CD141+ myeloid dendritic cell counts in blood, in parallel to an expansion of total and terminal effector TCRγδ+ T-cells. Interestingly, those GS patients who developed hypogammaglobulinemia several years after the thymoma presented with an immunological and clinical phenotype which more closely resembled a combined immune humoral and cellular defect, with poorer response to immunoglobulin replacement therapy, as compared to those in whom the thymoma and hypogammaglobulinemia were simultaneously detected. Discussion: Our findings provide a more accurate definition of the immune cell defects of GS patients and contribute to a better discrimination among GS patients between those with a pure B-cell defect vs. those suffering from a combined immunodeficiency with important consequences on the diagnosis and management of the disease.


Asunto(s)
Agammaglobulinemia , Inmunodeficiencia Variable Común , Síndromes de Inmunodeficiencia , Enfermedades de Inmunodeficiencia Primaria , Timoma , Neoplasias del Timo , Adulto , Humanos , Timoma/complicaciones , Agammaglobulinemia/diagnóstico , Agammaglobulinemia/complicaciones , Síndromes de Inmunodeficiencia/diagnóstico , Síndromes de Inmunodeficiencia/complicaciones , Neoplasias del Timo/complicaciones , Enfermedades de Inmunodeficiencia Primaria/complicaciones
8.
Clin Immunol ; 257: 109817, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37925120

RESUMEN

A subset of autoimmune diseases is characterized by predominant pathogenic IgG4 autoantibodies (IgG4-AID). Why IgG4 predominates in these disorders is unknown. We hypothesized that dysregulated B cell maturation or aberrant class switching causes overrepresentation of IgG4+ B cells and plasma cells. Therefore, we compared the B cell compartment of patients from four different IgG4-AID with two IgG1-3-AID and healthy donors, using flow cytometry. Relative subset abundance at all maturation stages was normal, except for a, possibly treatment-related, reduction in immature and naïve CD5+ cells. IgG4+ B cell and plasma cell numbers were normal in IgG4-AID patients, however they had a (sub)class-independent 8-fold increase in circulating CD20-CD138+ cells. No autoreactivity was found in this subset. These results argue against aberrant B cell development and rather suggest the autoantibody subclass predominance to be antigen-driven. The similarities between IgG4-AID suggest that, despite displaying variable clinical phenotypes, they share a similar underlying immune profile.


Asunto(s)
Autoanticuerpos , Enfermedades Autoinmunes , Humanos , Cambio de Clase de Inmunoglobulina , Inmunoglobulina G , Linfocitos B
9.
Am J Hematol ; 98(12): 1909-1922, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37792579

RESUMEN

Low-count monoclonal B-cell lymphocytosis (MBLlo ) has been associated with an underlying immunodeficiency and has recently emerged as a new risk factor for severe COVID-19. Here, we investigated the kinetics of immune cell and antibody responses in blood during COVID-19 of MBLlo versus non-MBL patients. For this study, we analyzed the kinetics of immune cells in blood of 336 COVID-19 patients (74 MBLlo and 262 non-MBL), who had not been vaccinated against SARS-CoV-2, over a period of 43 weeks since the onset of infection, using high-sensitivity flow cytometry. Plasma levels of anti-SARS-CoV-2 antibodies were measured in parallel by ELISA. Overall, early after the onset of symptoms, MBLlo COVID-19 patients showed increased neutrophil, monocyte, and particularly, plasma cell (PC) counts, whereas eosinophil, dendritic cell, basophil, and lymphocyte counts were markedly decreased in blood of a variable percentage of samples, and with a tendency toward normal levels from week +5 of infection onward. Compared with non-MBL patients, MBLlo COVID-19 patients presented higher neutrophil counts, together with decreased pre-GC B-cell, dendritic cell, and innate-like T-cell counts. Higher PC levels, together with a delayed PC peak and greater plasma levels of anti-SARS-CoV-2-specific antibodies (at week +2 to week +4) were also observed in MBLlo patients. In summary, MBLlo COVID-19 patients share immune profiles previously described for patients with severe SARS-CoV-2 infection, associated with a delayed but more pronounced PC and antibody humoral response once compared with non-MBL patients.


Asunto(s)
COVID-19 , Leucemia Linfocítica Crónica de Células B , Linfocitosis , Neoplasias de Células Plasmáticas , Lesiones Precancerosas , Humanos , Linfocitos B , Leucemia Linfocítica Crónica de Células B/diagnóstico , Formación de Anticuerpos , SARS-CoV-2 , Anticuerpos Antivirales
10.
Artículo en Inglés | MEDLINE | ID: mdl-37740440

RESUMEN

Presence of minimal residual disease (MRD), detected by flow cytometry, is an important prognostic biomarker in the management of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, data-analysis remains mainly expert-dependent. In this study, we designed and validated an Automated Gating & Identification (AGI) tool for MRD analysis in BCP-ALL patients using the two tubes of the EuroFlow 8-color MRD panel. The accuracy, repeatability, and reproducibility of the AGI tool was validated in a multicenter study using bone marrow follow-up samples from 174 BCP-ALL patients, stained with the EuroFlow BCP-ALL MRD panel. In these patients, MRD was assessed both by manual analysis and by AGI tool supported analysis. Comparison of MRD levels obtained between both approaches showed a concordance rate of 83%, with comparable concordances between MRD tubes (tube 1, 2 or both), treatment received (chemotherapy versus targeted therapy) and flow cytometers (FACSCanto versus FACSLyric). After review of discordant cases by additional experts, the concordance increased to 97%. Furthermore, the AGI tool showed excellent intra-expert concordance (100%) and good inter-expert concordance (90%). In addition to MRD levels, also percentages of normal cell populations showed excellent concordance between manual and AGI tool analysis. We conclude that the AGI tool may facilitate MRD analysis using the EuroFlow BCP-ALL MRD protocol and will contribute to a more standardized and objective MRD assessment. However, appropriate training is required for the correct analysis of MRD data.

12.
Front Immunol ; 14: 1165936, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37492569

RESUMEN

Circulating antibody-secreting cells are present in the peripheral blood of healthy individuals reflecting the continued activity of the humoral immune system. Antibody-secreting cells typically express CD27. Here we describe and characterize a small population of antibody-secreting class switched CD19+CD43+ B cells that lack expression of CD27 in the peripheral blood of healthy subjects. In this study, we characterized CD27-CD43+ cells. We demonstrate that class-switched CD27-CD43+ B cells possess characteristics of conventional plasmablasts as they spontaneously secrete antibodies, are morphologically similar to antibody-secreting cells, show downregulation of B cell differentiation markers, and have a gene expression profile related to conventional plasmablasts. Despite these similarities, we observed differences in IgA and IgG subclass distribution, expression of homing markers, replication history, frequency of somatic hypermutation, immunoglobulin repertoire, gene expression related to Toll-like receptors, cytokines, and cytokine receptors, and antibody response to vaccination. Their frequency is altered in immune-mediated disorders. Conclusion: we characterized CD27-CD43+ cells as antibody-secreting cells with differences in function and homing potential as compared to conventional CD27+ antibody-secreting cells.


Asunto(s)
Linfocitos B , Células Plasmáticas , Fenotipo , Inmunoglobulina G , Células Productoras de Anticuerpos
13.
Front Immunol ; 14: 1191992, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275858

RESUMEN

Introduction: Monitoring of innate myeloid cells (IMC) is broadly applied in basic and translational research, as well as in diagnostic patient care. Due to their immunophenotypic heterogeneity and biological plasticity, analysis of IMC populations typically requires large panels of markers. Currently, two cytometry-based techniques allow for the simultaneous detection of ≥40 markers: spectral flow cytometry (SFC) and mass cytometry (MC). However, little is known about the comparability of SFC and MC in studying IMC populations. Methods: We evaluated the performance of two SFC and MC panels, which contained 21 common markers, for the identification and subsetting of blood IMC populations. Based on unsupervised clustering analysis, we systematically identified 24 leukocyte populations, including 21 IMC subsets, regardless of the cytometry technique. Results: Overall, comparable results were observed between the two technologies regarding the relative distribution of these cell populations and the staining resolution of individual markers (Pearson's ρ=0.99 and 0.55, respectively). However, minor differences were observed between the two techniques regarding intra-measurement variability (median coefficient of variation of 42.5% vs. 68.0% in SFC and MC, respectively; p<0.0001) and reproducibility, which were most likely due to the significantly longer acquisition times (median 16 min vs. 159 min) and lower recovery rates (median 53.1% vs. 26.8%) associated with SFC vs. MC. Discussion: Altogether, our results show a good correlation between SFC and MC for the identification, enumeration and characterization of IMC in blood, based on large panels (>20) of antibody reagents.


Asunto(s)
Citometría de Flujo , Células Mieloides , Citometría de Flujo/métodos , Reproducibilidad de los Resultados , Humanos
15.
J Immunol ; 210(12): 1882-1888, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37125851

RESUMEN

Lymphocyte numbers naturally change through age. Normalization functions to account for this are sparse and mostly disregard measurements from children in which these changes are most prominent. In this study, we analyze cross-sectional numbers of mainly T lymphocytes (CD3+, CD3+CD4+, and CD3+CD8+) and their subpopulations (naive and memory) from 673 healthy Dutch individuals ranging from infancy to adulthood (0-62 y). We fitted the data by a delayed exponential function and estimated parameters for each lymphocyte subset. Our modeling approach follows general laboratory measurement procedures in which absolute cell counts of T lymphocyte subsets are calculated from observed percentages within a reference population that is truly counted (typically the total lymphocyte count). Consequently, we obtain one set of parameter estimates per T cell subset representing both the trajectories of their counts and percentages. We allow for an initial time delay of half a year before the total lymphocyte counts per microliter of blood start to change exponentially, and we find that T lymphocyte trajectories tend to increase during the first half a year of life. Thus, our study provides functions describing the general trajectories of T lymphocyte counts and percentages of the Dutch population. These functions provide important references to study T lymphocyte dynamics in disease, and they allow one to quantify losses and gains in longitudinal data, such as the CD4+ T cell decline in HIV-infected children and/or the rate of T cell recovery after the onset of treatment.


Asunto(s)
Subgrupos Linfocitarios , Subgrupos de Linfocitos T , Niño , Humanos , Estudios Transversales , Linfocitos T CD4-Positivos , Recuento de Linfocitos
16.
Mol Neurodegener ; 18(1): 25, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081539

RESUMEN

BACKGROUND: The rs72824905 single-nucleotide polymorphism in the PLCG2 gene, encoding the p.P522R residue change in Phospholipase C gamma 2 (PLCγ2), associates with protection against several dementia subtypes and with increased likelihood of longevity. Cell lines and animal models indicated that p.P522R is a functional hypermorph. We aimed to confirm this in human circulating peripheral immune cells. METHODS: We compared effects of p.P522R on immune system function between carriers and non-carriers (aged 59-103y), using in-depth immunophenotyping, functional B-cell and myeloid cell assays, and in vivo SARS-CoV-2 vaccination. RESULTS: In line with expectations, p.P522R impacts immune cell function only slightly, but it does so across a wide array of immune cell types. Upon B-cell stimulation, we observed increased PLCγ2 phosphorylation and calcium release, suggesting increased B-cell sensitivity upon antigen recognition. Further, p.P522R-carriers had higher numbers of CD20++CD21-CD24+ naive B cells and IgG1+ memory B cells. In myeloid cells, normalized ROS production was higher upon PLCγ2-dependent stimulation. On classical monocytes, CD33 levels were elevated. Furthermore, carriers expressed lower levels of allergy-related FcεRI on several immune cell subsets. Nevertheless, carriers and non-carriers had similar serological responses to SARS-CoV-2 vaccination. CONCLUSION: The immune system from p.P522R-carriers is slightly more responsive to stimulation than in non-carriers.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Humanos , Sistema Inmunológico , Fosfolipasa C gamma/genética , SARS-CoV-2
18.
Sci Immunol ; 7(77): eade0182, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36367948

RESUMEN

T cell development in the mouse thymus has been studied extensively, but less is known regarding T cell development in the human thymus. We used a combination of single-cell techniques and functional assays to perform deep immune profiling of human T cell development, focusing on the initial stages of prelineage commitment. We identified three thymus-seeding progenitor populations that also have counterparts in the bone marrow. In addition, we found that the human thymus physiologically supports the development of monocytes, dendritic cells, and NK cells, as well as limited development of B cells. These results are an important step toward monitoring and guiding regenerative therapies in patients after hematopoietic stem cell transplantation.


Asunto(s)
Células Madre Hematopoyéticas , Linfocitos T , Ratones , Animales , Humanos , Timo , Diferenciación Celular , Células Asesinas Naturales
19.
Front Med (Lausanne) ; 9: 997305, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36237552

RESUMEN

Mass spectrometry (MS)-based proteomics profiling has undoubtedly increased the knowledge about cellular processes and functions. However, its applicability for paucicellular sample analyses is currently limited. Although new approaches have been developed for single-cell studies, most of them have not (yet) been standardized and/or require highly specific (often home-built) devices, thereby limiting their broad implementation, particularly in non-specialized settings. To select an optimal MS-oriented proteomics approach applicable in translational research and clinical settings, we assessed 10 different sample preparation procedures in paucicellular samples of closely-related cell types. Particularly, five cell lysis protocols using different chemistries and mechanical forces were combined with two sample clean-up techniques (C18 filter- and SP3-based), followed by tandem mass tag (TMT)-based protein quantification. The evaluation was structured in three phases: first, cell lines from hematopoietic (THP-1) and non-hematopoietic (HT-29) origins were used to test the approaches showing the combination of a urea-based lysis buffer with the SP3 bead-based clean-up system as the best performer. Parameters such as reproducibility, accessibility, spatial distribution, ease of use, processing time and cost were considered. In the second phase, the performance of the method was tested on maturation-related cell populations: three different monocyte subsets from peripheral blood and, for the first time, macrophages/microglia (MAC) from glioblastoma samples, together with T cells from both tissues. The analysis of 50,000 cells down to only 2,500 cells revealed different protein expression profiles associated with the distinct cell populations. Accordingly, a closer relationship was observed between non-classical monocytes and MAC, with the latter showing the co-expression of M1 and M2 macrophage markers, although pro-tumoral and anti-inflammatory proteins were more represented. In the third phase, the results were validated by high-end spectral flow cytometry on paired monocyte/MAC samples to further determine the sensitivity of the MS approach selected. Finally, the feasibility of the method was proven in 194 additional samples corresponding to 38 different cell types, including cells from different tissue origins, cellular lineages, maturation stages and stimuli. In summary, we selected a reproducible, easy-to-implement sample preparation method for MS-based proteomic characterization of paucicellular samples, also applicable in the setting of functionally closely-related cell populations.

20.
Front Immunol ; 13: 935879, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36189252

RESUMEN

Innate myeloid cell (IMC) populations form an essential part of innate immunity. Flow cytometric (FCM) monitoring of IMCs in peripheral blood (PB) has great clinical potential for disease monitoring due to their role in maintenance of tissue homeostasis and ability to sense micro-environmental changes, such as inflammatory processes and tissue damage. However, the lack of standardized and validated approaches has hampered broad clinical implementation. For accurate identification and separation of IMC populations, 62 antibodies against 44 different proteins were evaluated. In multiple rounds of EuroFlow-based design-testing-evaluation-redesign, finally 16 antibodies were selected for their non-redundancy and separation power. Accordingly, two antibody combinations were designed for fast, sensitive, and reproducible FCM monitoring of IMC populations in PB in clinical settings (11-color; 13 antibodies) and translational research (14-color; 16 antibodies). Performance of pre-analytical and analytical variables among different instruments, together with optimized post-analytical data analysis and reference values were assessed. Overall, 265 blood samples were used for design and validation of the antibody combinations and in vitro functional assays, as well as for assessing the impact of sample preparation procedures and conditions. The two (11- and 14-color) antibody combinations allowed for robust and sensitive detection of 19 and 23 IMC populations, respectively. Highly reproducible identification and enumeration of IMC populations was achieved, independently of anticoagulant, type of FCM instrument and center, particularly when database/software-guided automated (vs. manual "expert-based") gating was used. Whereas no significant changes were observed in identification of IMC populations for up to 24h delayed sample processing, a significant impact was observed in their absolute counts after >12h delay. Therefore, accurate identification and quantitation of IMC populations requires sample processing on the same day. Significantly different counts were observed in PB for multiple IMC populations according to age and sex. Consequently, PB samples from 116 healthy donors (8-69 years) were used for collecting age and sex related reference values for all IMC populations. In summary, the two antibody combinations and FCM approach allow for rapid, standardized, automated and reproducible identification of 19 and 23 IMC populations in PB, suited for monitoring of innate immune responses in clinical and translational research settings.


Asunto(s)
Anticuerpos , Células Mieloides , Anticoagulantes , Citometría de Flujo , Humanos , Inmunofenotipificación , Valores de Referencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA