Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
NPJ Vaccines ; 9(1): 89, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782902

RESUMEN

Mosaic HIV-1 vaccines have been shown to elicit robust humoral and cellular immune responses in people living with HIV-1 (PLWH), that had started antiretroviral therapy (ART) during acute infection. We evaluated the safety and immunogenicity of 2 mosaic vaccine regimens in virologically suppressed individuals that had initiated ART during the chronic phase of infection, exemplifying the majority of PLWH. In this double-blind, placebo-controlled phase 1 trial (IPCAVD013/HTX1002) 25 ART-suppressed PLWH were randomized to receive Ad26.Mos4.HIV/MVA-Mosaic (Ad26/MVA) (n = 10) or Ad26.Mos4.HIV/Ad26.Mos4.HIV plus adjuvanted gp140 protein (Ad26/Ad26+gp140) (n = 9) or placebo (n = 6). Primary endpoints included safety and tolerability and secondary endpoints included HIV-specific binding and neutralizing antibody titers and HIV-specific T cell responses. Both vaccine regimens were well tolerated with pain/tenderness at the injection site and fatigue, myalgia/chills and headache as the most commonly reported solicited local and grade 3 systemic adverse events, respectively. In the Ad26/Ad26+gp140 group, Env-specific IFN-γ T cell responses showed a median 12-fold increase while responses to Gag and Pol increased 1.8 and 2.4-fold, respectively. The breadth of T cell responses to individual peptide subpools increased from 11.0 pre-vaccination to 26.0 in the Ad26/Ad26+gp140 group and from 10.0 to 14.5 in the Ad26/MVA group. Ad26/Ad26+gp140 vaccination increased binding antibody titers against vaccine-matched clade C Env 5.5-fold as well as augmented neutralizing antibody titers against Clade C pseudovirus by 7.2-fold. Both vaccine regimens were immunogenic, while the addition of the protein boost resulted in additional T cell and augmented binding and neutralizing antibody titers. These data suggest that the Ad26/Ad26+gp140 regimen should be tested further.

2.
J Virol ; 97(10): e0112623, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37811993

RESUMEN

IMPORTANCE: The functionality of CD8+ T cells against human immunodeficiency virus-1 (HIV-1) antigens is indicative of HIV-progression in both animal models and people living with HIV. It is, therefore, of interest to assess CD8+ T cell responses in a prophylactic vaccination setting, as this may be an important component of the immune system that inhibits HIV-1 replication. T cell responses induced by the adenovirus serotype 26 (Ad26) mosaic vaccine regimen were assessed previously by IFN-γ ELISpot and flow cytometric assays, yet these assays only measure cytokine production but not the capacity of CD8+ T cells to inhibit replication of HIV-1. In this study, we demonstrate direct anti-viral function of the clinical Ad26 mosaic vaccine regimen through ex vivo inhibition of replication of diverse clades of HIV-1 isolates in the participant's own CD4+ T cells.


Asunto(s)
Vacunas contra el SIDA , Linfocitos T CD8-positivos , Infecciones por VIH , Humanos , Vacunas contra el SIDA/inmunología , Antígenos Virales , Linfocitos T CD8-positivos/inmunología , Infecciones por VIH/prevención & control , VIH-1 , Vacunación
3.
Cardiovasc Res ; 119(15): 2508-2521, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-37390467

RESUMEN

AIMS: Aging is a dominant driver of atherosclerosis and induces a series of immunological alterations, called immunosenescence. Given the demographic shift towards elderly, elucidating the unknown impact of aging on the immunological landscape in atherosclerosis is highly relevant. While the young Western diet-fed Ldlr-deficient (Ldlr-/-) mouse is a widely used model to study atherosclerosis, it does not reflect the gradual plaque progression in the context of an aging immune system as occurs in humans. METHODS AND RESULTS: Here, we show that aging promotes advanced atherosclerosis in chow diet-fed Ldlr-/- mice, with increased incidence of calcification and cholesterol crystals. We observed systemic immunosenescence, including myeloid skewing and T-cells with more extreme effector phenotypes. Using a combination of single-cell RNA-sequencing and flow cytometry on aortic leucocytes of young vs. aged Ldlr-/- mice, we show age-related shifts in expression of genes involved in atherogenic processes, such as cellular activation and cytokine production. We identified age-associated cells with pro-inflammatory features, including GzmK+CD8+ T-cells and previously in atherosclerosis undefined CD11b+CD11c+T-bet+ age-associated B-cells (ABCs). ABCs of Ldlr-/- mice showed high expression of genes involved in plasma cell differentiation, co-stimulation, and antigen presentation. In vitro studies supported that ABCs are highly potent antigen-presenting cells. In cardiovascular disease patients, we confirmed the presence of these age-associated T- and B-cells in atherosclerotic plaques and blood. CONCLUSIONS: Collectively, we are the first to provide comprehensive profiling of aged immunity in atherosclerotic mice and reveal the emergence of age-associated T- and B-cells in the atherosclerotic aorta. Further research into age-associated immunity may contribute to novel diagnostic and therapeutic tools to combat cardiovascular disease.


Asunto(s)
Enfermedades de la Aorta , Aterosclerosis , Enfermedades Cardiovasculares , Placa Aterosclerótica , Humanos , Ratones , Animales , Anciano , Enfermedades Cardiovasculares/complicaciones , Enfermedades de la Aorta/metabolismo , Aterosclerosis/metabolismo , Leucocitos/metabolismo , Receptores de LDL/genética , Ratones Noqueados , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
4.
Cardiovasc Res ; 117(14): 2755-2766, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33063097

RESUMEN

AIMS: CD8+ T cells can differentiate into subpopulations that are characterized by a specific cytokine profile, such as the Tc17 population that produces interleukin-17. The role of this CD8+ T-cell subset in atherosclerosis remains elusive. In this study, we therefore investigated the contribution of Tc17 cells to the development of atherosclerosis. METHODS AND RESULTS: Flow cytometry analysis of atherosclerotic lesions from apolipoprotein E-deficient mice revealed a pronounced increase in RORγt+CD8+ T cells compared to the spleen, indicating a lesion-specific increase in Tc17 cells. To study whether and how the Tc17 subset affects atherosclerosis, we performed an adoptive transfer of Tc17 cells or undifferentiated Tc0 cells into CD8-/- low-density lipoprotein receptor-deficient mice fed a Western-type diet. Using flow cytometry, we showed that Tc17 cells retained a high level of interleukin-17A production in vivo. Moreover, Tc17 cells produced lower levels of interferon-γ than their Tc0 counterparts. Analysis of the aortic root revealed that the transfer of Tc17 cells did not increase atherosclerotic lesion size, in contrast to Tc0-treated mice. CONCLUSION: These findings demonstrate a lesion-localized increase in Tc17 cells in an atherosclerotic mouse model. Tc17 cells appeared to be non-atherogenic, in contrast to their Tc0 counterpart.


Asunto(s)
Aorta/inmunología , Enfermedades de la Aorta/inmunología , Aterosclerosis/inmunología , Linfocitos T CD8-positivos/inmunología , Interleucina-17/inmunología , Placa Aterosclerótica , Traslado Adoptivo , Animales , Aorta/metabolismo , Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/patología , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/trasplante , Diferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Fenotipo , Transducción de Señal
5.
J Control Release ; 318: 246-255, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31812539

RESUMEN

Regulatory T cells (Tregs) are vital for maintaining a balanced immune response and their dysfunction is often associated with auto-immune disorders. We have previously shown that antigen-loaded anionic liposomes composed of phosphatidylcholine (PC) and phosphatidylglycerol (PG) and cholesterol can induce strong antigen-specific Treg responses. We hypothesized that altering the rigidity of these liposomes while maintaining their size and surface charge would affect their capability of inducing Treg responses. The rigidity of liposomes is affected in part by the length and saturation of carbon chains of the phospholipids in the bilayer, and in part by the presence of cholesterol. We used atomic force microscopy (AFM) to measure the rigidity of anionic OVA323-containing liposomes composed of different types of PC and PG, with or without cholesterol, in a molar ratio of 4:1(:2) distearoyl (DS)PC:DSPG (Young's modulus (YM) 3611 ± 1271 kPa), DSPC:DSPG:CHOL (1498 ± 531 kPa), DSPC:dipalmitoyl (DP)PG:CHOL (1208 ± 538), DPPC:DPPG:CHOL (1195 ± 348 kPa), DSPC:dioleoyl (DO)PG:CHOL (825 ± 307 kPa), DOPC:DOPG:CHOL (911 ± 447 kPa), and DOPC:DOPG (494 ± 365 kPa). Next, we assessed if rigidity affects the association of liposomes to bone marrow-derived dendritic cells (BMDCs) in vitro. Aside from DOPC:DOPG liposomes, we observed a positive correlation between liposomal rigidity and cellular association. Finally, we show that rigidity positively correlates with Treg responses in vitro in murine DCs and in vivo in mice. Our findings underline the suitability of AFM to measure liposome rigidity and the importance of this parameter when designing liposomes as a vaccine delivery system.


Asunto(s)
Liposomas , Linfocitos T Reguladores , Animales , Antígenos , Ratones , Microscopía de Fuerza Atómica , Fosfolípidos
6.
Atherosclerosis ; 285: 71-78, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31048101

RESUMEN

BACKGROUND AND AIMS: CD8+ T-cells have been attributed both atherogenic and atheroprotective properties, but analysis of CD8+ T-cells has mostly been restricted to the circulation and secondary lymphoid organs. The atherosclerotic lesion, however, is a complex microenvironment containing a plethora of inflammatory signals, which may affect CD8+ T-cell activation. Here, we address how this environment affects the functionality of CD8+ T-cells. METHODS AND RESULTS: We compared the cytokine production of CD8+ T-cells derived from spleens and enzymatically digested aortas of apoE-/- mice with advanced atherosclerosis by flow cytometry. Aortic CD8+ T-cells produced decreased amounts of IFN-γ and TNF-α compared to their systemic counterparts. The observed dysfunctional phenotype of the lesion-derived CD8+ T-cells was not associated with classical exhaustion markers, but with increased expression of the ectonucleotidase CD39. Indeed, pharmacological inhibition of CD39 in apoE-/- mice partly restored cytokine production by CD8+ T-cells. Using a bone-marrow transplantation approach, we show that TCR signaling is required to induce CD39 expression on CD8+ T-cells in atherosclerotic lesions. Importantly, analysis of human endarterectomy samples showed a strong microenvironment specific upregulation of CD39 on CD8+ T-cells in the plaques of human patients compared to matched blood samples. CONCLUSIONS: Our results suggest that the continuous TCR signaling in the atherosclerotic environment in the vessel wall induces an immune regulatory CD8+ T-cell phenotype that is associated with decreased cytokine production through increased CD39 expression in both a murine atherosclerotic model and in atherosclerosis patients. This provides a new understanding of immune regulation by CD8+ T-cells in atherosclerosis.


Asunto(s)
Antígenos CD/fisiología , Apirasa/fisiología , Aterosclerosis/inmunología , Linfocitos T CD8-positivos/fisiología , Microambiente Celular/inmunología , Animales , Células Cultivadas , Humanos , Inflamación/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T/fisiología , Transducción de Señal
7.
Cells ; 8(4)2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30970663

RESUMEN

The presence of mast cells in human atherosclerotic plaques has been associated with adverse cardiovascular events. Mast cell activation, through the classical antigen sensitized-IgE binding to their characteristic Fcε-receptor, causes the release of their cytoplasmic granules. These granules are filled with neutral proteases such as tryptase, but also with histamine and pro-inflammatory mediators. Mast cells accumulate in high numbers within human atherosclerotic tissue, particularly in the shoulder region of the plaque. These findings are largely based on immunohistochemistry, which does not allow for the extensive characterization of these mast cells and of the local mast cell activation mechanisms. In this study, we thus aimed to develop a new flow-cytometry based methodology in order to analyze mast cells in human atherosclerosis. We enzymatically digested 22 human plaque samples, collected after femoral and carotid endarterectomy surgery, after which we prepared a single cell suspension for flow cytometry. We were able to identify a specific mast cell population expressing both CD117 and the FcεR, and observed that most of the intraplaque mast cells were activated based on their CD63 protein expression. Furthermore, most of the activated mast cells had IgE fragments bound on their surface, while another fraction showed IgE-independent activation. In conclusion, we are able to distinguish a clear mast cell population in human atherosclerotic plaques, and this study establishes a strong relationship between the presence of IgE and the activation of mast cells in advanced atherosclerosis. Our data pave the way for potential therapeutic intervention through targeting IgE-mediated actions in human atherosclerosis.


Asunto(s)
Aterosclerosis/patología , Inmunoglobulina E/metabolismo , Mastocitos/metabolismo , Placa Aterosclerótica/patología , Tetraspanina 30/metabolismo , Células Cultivadas , Citometría de Flujo/métodos , Humanos , Mastocitos/patología , Proteínas Proto-Oncogénicas c-kit/metabolismo , Receptores de IgE/metabolismo
8.
J Immunol ; 202(5): 1531-1539, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30683705

RESUMEN

Mast cells (MCs) are potent innate immune cells that aggravate atherosclerosis through the release of proinflammatory mediators inside atherosclerotic plaques. Similarly, CD4+ T cells are constituents of the adaptive immune response and accumulate within the plaques following lipid-specific activation by APCs. Recently it has been proposed that these two cell types can interact in a direct manner. However, no indication of such an interaction has been investigated in the context of atherosclerosis. In our study, we aimed to examine whether MCs can act as APCs in atherosclerosis, thereby modulating CD4+ T cell responses. We observed that MCs increased their MHC class II expression under hyperlipidemic conditions both in vivo and in vitro. Furthermore, we showed that MCs can present Ags in vivo via MHC class II molecules. Serum from high-fat diet-fed mice also enhanced the expression of the costimulatory molecule CD86 on cultured MCs, whereas OVA peptide-loaded MCs increased OT-II CD4+ T cell proliferation in vitro. The aortic CD4+ and TH1 cell content of atherosclerotic mice that lack MCs was reduced as compared with their wild-type counterparts. Importantly, we identified MCs that express HLA-DR in advanced human atheromata, indicating that these cells are capable of Ag presentation within human atherosclerotic plaques. Therefore, in this artice, we show that MCs may directly modulate adaptive immunity by acting as APCs in atherosclerosis.


Asunto(s)
Aterosclerosis/inmunología , Linfocitos T CD4-Positivos/inmunología , Hipercolesterolemia/inmunología , Mastocitos/inmunología , Animales , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Noqueados
9.
Cardiovasc Res ; 115(4): 729-738, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30335148

RESUMEN

AIMS: T lymphocytes play an important role in atherosclerosis development, but the role of the CD8+ T-cell remains debated, especially in the clinically relevant advanced stages of atherosclerosis development. Here, we set out to determine the role of CD8+ T-cells in advanced atherosclerosis. METHODS AND RESULTS: Human endarterectomy samples analysed by flow cytometry showed a negative correlation between the percentage of CD8+ T-cells and macrophages, suggesting a possible protective role for these cells in lesion development. To further test this hypothesis, LDLr-/- mice were fed a western-type diet (WTD) for 10 weeks to induce atherosclerosis, after which they received CD8α-depleting or isotype control antibody for 6 weeks. Depletion of CD8+ T-cells in advanced atherosclerosis resulted in less stable lesions, with significantly reduced collagen content in the trivalve area, increased macrophage content and increased necrotic core area compared with controls. Mechanistically, we observed that CD8 depletion specifically increased the fraction of Th1 CD4+ T-cells in the lesions. Treatment of WTD-fed LDLr-/- mice with a FasL-neutralizing antibody resulted in similar changes in macrophages and CD4+ T-cell skewing as CD8+ T-cell depletion. CONCLUSION: These findings demonstrate for the first time a local, protective role for CD8+ T-cells in advanced atherosclerosis, through limiting accumulation of Th1 cells and macrophages, identifying a novel regulatory mechanism for these cells in atherosclerosis.


Asunto(s)
Arterias/inmunología , Aterosclerosis/inmunología , Linfocitos T CD8-positivos/inmunología , Comunicación Celular , Macrófagos/inmunología , Placa Aterosclerótica , Células TH1/inmunología , Animales , Arterias/metabolismo , Arterias/patología , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Linfocitos T CD8-positivos/metabolismo , Células Cultivadas , Microambiente Celular , Colágeno/metabolismo , Modelos Animales de Enfermedad , Humanos , Macrófagos/metabolismo , Masculino , Ratones Noqueados para ApoE , Necrosis , Receptores de LDL/deficiencia , Receptores de LDL/genética , Transducción de Señal , Células TH1/metabolismo
10.
Atherosclerosis ; 280: 132-139, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30513408

RESUMEN

BACKGROUND AND AIMS: The development of atherosclerosis is tightly regulated by the innate and adaptive immune system. Communication between these two compartments occurs, among others, upon presentation of lipid antigens to the NKT cell population by CD1d-expressing antigen-presenting cells. Recent evidence states that also mast cells express CD1d and can directly communicate with NKT cells. However, no such relationship has been reported in atherosclerosis. Here, we aimed to elucidate in vivo the CD1d-mediated interaction between mast cells and NKT cells upon atherosclerosis progression. METHODS: We adoptively transferred CD1d-/- or control mast cells to mast cell-deficient apoE-/-KitW-sh/W-sh mice and subsequently placed the animals on a Western-type diet for 10 weeks. RESULTS: At the end of the Western-type diet period, the aortic root of CD1d-/- mast cell-reconstituted mice displayed increased plaque size, with less collagen deposition and higher intraplaque CD4+ T cells, as compared to control mice. In addition, T cells inside the aortic arch showed higher pro-inflammatory cytokine production in the form of IFNγ, TNFα and IL-17. Finally, T-bet expression was found elevated in both CD4+ and CD8+ circulating T cells. CONCLUSIONS: This study is the first to illustrate that disruption of the CD1d communication pathway between mast cells and NKT cells aggravates atherosclerosis, through a shift towards pro-inflammatory T cell responses. This ability of mast cell action during plaque progression sheds new light on their role in atherosclerosis.


Asunto(s)
Antígenos CD1d/metabolismo , Aterosclerosis/inmunología , Linfocitos T CD4-Positivos/citología , Células Asesinas Naturales/citología , Mastocitos/citología , Células T Asesinas Naturales/citología , Placa Aterosclerótica/inmunología , Animales , Aorta Torácica/metabolismo , Células de la Médula Ósea/citología , Linfocitos T CD8-positivos/citología , Femenino , Inflamación , Interferón gamma/inmunología , Interleucina-17/inmunología , Activación de Linfocitos , Mastocitos/metabolismo , Ratones , Factor de Necrosis Tumoral alfa/inmunología
11.
J Control Release ; 291: 135-146, 2018 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-30365993

RESUMEN

Atherosclerosis is the predominant underlying pathology of many types of cardiovascular disease and is one of the leading causes of death worldwide. It is characterized by the retention of oxidized low-density lipoprotein (ox-LDL) in lipid-rich macrophages (foam cells) in the intima of arteries. Autoantigens derived from oxLDL can be used to vaccinate against atherosclerosis. However, a major challenge is the induction of antigen-specific Tregs in a safe and effective way. Here we report that liposomes containing the anionic phospholipid 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG) induce Tregs that are specific for the liposomes' cargo. Mechanistically, we show a crucial role for the protein corona that forms on the liposomes in the circulation, as uptake of DSPG-liposomes by antigen-presenting cells is mediated via complement component 1q (C1q) and scavenger receptors (SRs). Vaccination of atherosclerotic mice on a western-type diet with DSPG-liposomes encapsulating an LDL-derived peptide antigen significantly reduced plaque formation by 50% and stabilized the plaques, and reduced serum cholesterol concentrations. These results indicate that DSPG-liposomes have potential as a delivery system in vaccination against atherosclerosis.


Asunto(s)
Aterosclerosis/prevención & control , Liposomas/uso terapéutico , Péptidos/uso terapéutico , Fosfatidilgliceroles/uso terapéutico , Linfocitos T Reguladores/efectos de los fármacos , Animales , Aterosclerosis/inmunología , Células Cultivadas , Complemento C1q/inmunología , Masculino , Ratones Endogámicos C57BL , Linfocitos T Reguladores/inmunología
12.
Curr Opin Lipidol ; 29(5): 411-416, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30020198

RESUMEN

PURPOSE OF REVIEW: Atherosclerosis and the clinical consequence of cardiovascular disease remain the leading cause of death worldwide. Both an increase in cholesterol levels, as well as immune responses drive the pathogenesis of this disease. Although much is known about the role of many immune cell subsets in atherogenesis, research into the role of CD8 T cells is limited. RECENT FINDINGS: Both atheroprotective and atherogenic functions of CD8 T cells have been reported. On the one hand, the inflammatory cytokines produced by CD8 T cells exacerbate inflammatory responses, and the cytotoxic activity of these cells toward lesion-stabilizing cells such as endothelial cells drives the progression and instability of atherosclerotic lesions. On the other hand, cytotoxic activity toward antigen presenting cells and the presence of regulatory CD8 T-cell subsets dampen immunity and can limit atherosclerosis. SUMMARY: Here we review the different roles of CD8 T cells in atherosclerosis and discuss possible treatment strategies targeting these cells to reduce atherosclerotic lesion burden.


Asunto(s)
Aterosclerosis/inmunología , Aterosclerosis/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Animales , Aterosclerosis/tratamiento farmacológico , Linfocitos T CD8-positivos/efectos de los fármacos , Humanos , Terapia Molecular Dirigida
13.
Arterioscler Thromb Vasc Biol ; 37(8): 1457-1461, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28596375

RESUMEN

OBJECTIVE: Inflammasomes are multiprotein complexes, and their activation has been associated with cardiovascular disease. Inflammasome activation leads to secretion of caspase-1 by innate immune cells, resulting in the activation of interleukin-1ß. Recently, a potent and selective inhibitor of the NLRP3 inflammasome, MCC950, was described. In this study, we investigated the effect of MCC950 on atherosclerotic lesion development in apoE-/- mice. APPROACH AND RESULTS: First, we determined the efficacy of MCC950 in vitro. Bone marrow-derived macrophages and dendritic cells were stimulated with lipopolysaccharide and cholesterol crystals resulting in high levels of interleukin-1ß release, which was inhibited by MCC950. In vivo MCC950 treatment reduced lipopolysaccharide-induced interleukin-1ß secretion, without affecting the tumor necrosis factor-α response. Subsequently, atherosclerotic plaques were induced in Western-type diet fed apoE-/- mice by semiconstrictive perivascular collar placement at the carotid arteries, after which the mice received MCC950 (10 mg/kg) or vehicle control 3× per week intraperitoneally for 4 weeks. After euthanize, atherosclerotic plaque size and volume were quantified in hematoxylin-eosin-stained 10-µm cryosections throughout the artery. MCC950 treatment significantly reduced the development of atherosclerotic lesions as determined by maximal stenosis, average plaque size, and plaque volume. Although the amount of collagen and the necrotic core size were not affected, the number of macrophages in the plaque was significantly reduced on treatment. In addition, VCAM-1 (vascular cell adhesion molecule 1) and ICAM-1 (intercellular adhesion molecule 1) mRNA expression was significantly reduced in the carotids of MCC950-treated mice. CONCLUSIONS: These findings show that specific inhibition of the NLRP3 inflammasome using MCC950 can be a promising therapeutic approach to inhibit atherosclerotic lesion development.


Asunto(s)
Antiinflamatorios/farmacología , Apolipoproteínas E/deficiencia , Aterosclerosis/prevención & control , Arterias Carótidas/efectos de los fármacos , Enfermedades de las Arterias Carótidas/prevención & control , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Inflamasomas/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Sulfonas/farmacología , Animales , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Arterias Carótidas/metabolismo , Arterias Carótidas/patología , Enfermedades de las Arterias Carótidas/genética , Enfermedades de las Arterias Carótidas/metabolismo , Enfermedades de las Arterias Carótidas/patología , Células Cultivadas , Colesterol/farmacología , Cristalización , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Dieta Occidental , Modelos Animales de Enfermedad , Femenino , Furanos , Predisposición Genética a la Enfermedad , Indenos , Inflamasomas/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Necrosis , Fenotipo , Placa Aterosclerótica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Sulfonamidas , Factores de Tiempo , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo
14.
J Control Release ; 234: 124-34, 2016 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-27221070

RESUMEN

Particulate carrier systems are promising drug delivery vehicles for subunit vaccination as they can enhance and direct the type of T cell response. In order to develop vaccines with optimal immunogenicity, a thorough understanding of parameters that could affect the strength and quality of immune responses is required. Pathogens have different dimensions and stimulate the immune system in a specific way. It is therefore not surprising that physicochemical characteristics of particulate vaccines, such as particle size, shape, and rigidity, affect multiple processes that impact their immunogenicity. Among these processes are the uptake of the particles from the site of administration, passage through lymphoid tissue and the uptake, antigen processing and activation of antigen-presenting cells. Herein, we systematically review the role of the size, shape and rigidity of particulate vaccines in enhancing and skewing T cell response and attempted to provide a "roadmap" for rational vaccine design.


Asunto(s)
Presentación de Antígeno/inmunología , Portadores de Fármacos/química , Nanopartículas/química , Vacunas/administración & dosificación , Vacunas/inmunología , Animales , Humanos , Tamaño de la Partícula , Propiedades de Superficie
15.
Sci Rep ; 5: 15559, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26490642

RESUMEN

Mesenchymal stem cells (MSCs) have regenerative properties, but recently they were also found to have immunomodulatory capacities. We therefore investigated whether MSCs could reduce atherosclerosis, which is determined by dyslipidaemia and chronic inflammation. We adoptively transferred MSCs into low-density lipoprotein-receptor knockout mice and put these on a Western-type diet to induce atherosclerosis. Initially after treatment, we found higher levels of circulating regulatory T cells. In the long-term, overall numbers of effector T cells were reduced by MSC treatment. Moreover, MSC-treated mice displayed a significant 33% reduction in circulating monocytes and a 77% reduction of serum CCL2 levels. Most strikingly, we found a previously unappreciated effect on lipid metabolism. Serum cholesterol was reduced by 33%, due to reduced very low-density lipoprotein levels, likely a result of reduced de novo hepatic lipogenesis as determined by a reduced expression of Stearoyl-CoA desaturase-1 and lipoprotein lipase. MSCs significantly affected lesion development, which was reduced by 33% in the aortic root. These lesions contained 56% less macrophages and showed a 61% reduction in T cell numbers. We show here for the first time that MSC treatment affects not only inflammatory responses but also significantly reduces dyslipidaemia in mice. This makes MSCs a potent candidate for atherosclerosis therapies.


Asunto(s)
Aterosclerosis/terapia , Inflamación/terapia , Trasplante de Células Madre Mesenquimatosas , Receptores de LDL/genética , Animales , Aorta/metabolismo , Aorta/patología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Dieta , Modelos Animales de Enfermedad , Humanos , Inflamación/inmunología , Inflamación/patología , Macrófagos , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Noqueados , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...