Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Thromb Haemost ; 121(5): 594-602, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33302303

RESUMEN

Hydrogen-deuterium exchange mass spectrometry (HDX-MS) was employed to gain insight into the changes in factor VIII (FVIII) that occur upon its activation and assembly with activated factor IX (FIXa) on phospholipid membranes. HDX-MS analysis of thrombin-activated FVIII (FVIIIa) revealed a marked increase in deuterium incorporation of amino acid residues along the A1-A2 and A2-A3 interface. Rapid dissociation of the A2 domain from FVIIIa can explain this observation. In the presence of FIXa, enhanced deuterium incorporation at the interface of FVIIIa was similar to that of FVIII. This is compatible with the previous finding that FIXa contributes to A2 domain retention in FVIIIa. A2 domain region Leu631-Tyr637, which is not part of the interface between the A domains, also showed a marked increase in deuterium incorporation in FVIIIa compared with FVIII. Deuterium uptake of this region was decreased in the presence of FIXa beyond that observed in FVIII. This implies that FIXa alters the conformation or directly interacts with this region in FVIIIa. Replacement of Val634 in FVIII by alanine using site-directed mutagenesis almost completely impaired the ability of the activated cofactor to enhance the activity of FIXa. Surface plasmon resonance analysis revealed that the rates of A2 domain dissociation from FVIIIa and FVIIIa-Val634Ala were indistinguishable. HDX-MS analysis showed, however, that FIXa was unable to retain the A2 domain in FVIIIa-Val634Ala. The combined results of this study suggest that the local structure of Leu631-Tyr637 is altered by FIXa and that this region contributes to the cofactor function of FVIII.


Asunto(s)
Coagulación Sanguínea/genética , Medición de Intercambio de Deuterio/métodos , Deuterio/química , Factor IXa/química , Factor VIIIa/química , Hemofilia A/genética , Factor IXa/genética , Humanos , Leucina , Espectrometría de Masas , Conformación Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Resonancia por Plasmón de Superficie , Tirosina
2.
Blood ; 136(23): 2703-2714, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-32678887

RESUMEN

The assembly of the enzyme-activated factor IX (FIXa) with its cofactor, activated factor VIII (FVIIIa) is a crucial event in the coagulation cascade. The absence or dysfunction of either enzyme or cofactor severely compromises hemostasis and causes hemophilia. FIXa is a notoriously inefficient enzyme that needs FVIIIa to drive its hemostatic potential, by a mechanism that has remained largely elusive to date. In this study, we employed hydrogen-deuterium exchange-mass spectrometry (HDX-MS) to investigate how FIXa responds to assembly with FVIIIa in the presence of phospholipids. This revealed a complex pattern of changes that partially overlaps with those changes that occur upon occupation of the substrate-binding site by an active site-directed inhibitor. Among the changes driven by both cofactor and substrate, HDX-MS highlighted several surface loops that have been implicated in allosteric networks in related coagulation enzymes. Inspection of FVIIIa-specific changes indicated that 3 helices are involved in FIXa-FVIIIa assembly. These are part of a basic interface that is also known as exosite II. Mutagenesis of basic residues herein, followed by functional studies, identified this interface as an extended FVIIIa-interactive patch. HDX-MS was also applied to recombinant FIXa variants that are associated with severe hemophilia B. This revealed that single amino acid substitutions can silence the extended network of FVIIIa-driven allosteric changes. We conclude that HDX-MS has the potential to visualize the functional impact of disease-associated mutations on enzyme-cofactor complexes in the hemostatic system.


Asunto(s)
Medición de Intercambio de Deuterio , Factor IXa/química , Factor VIII/química , Espectrometría de Masas , Mutación , Regulación Alostérica/genética , Factor IXa/genética , Factor IXa/metabolismo , Factor VIII/genética , Factor VIII/metabolismo , Hemofilia B/genética , Hemofilia B/metabolismo , Humanos , Conformación Proteica en Hélice alfa , Dominios Proteicos
3.
J Thromb Haemost ; 18(2): 364-372, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31675465

RESUMEN

BACKGROUND: The identity of the amino acid regions of factor VIII (FVIII) that contribute to factor IXa (FIXa) and von Willebrand factor (VWF) binding has not been fully resolved. Previously, we observed that replacing the FVIII C1 domain for the one of factor V (FV) markedly reduces VWF binding and cofactor function. Compared to the FV C1 domain, this implies that the FVIII C1 domain comprises unique surface-exposed elements involved in VWF and FIXa interaction. OBJECTIVE: The aim of this study is to identify residues in the FVIII C1 domain that contribute to VWF and FIXa binding. METHODS: Structures and primary sequences of FVIII and FV were compared to identify surface-exposed residues unique to the FVIII C1 domain. The identified residues were replaced with alanine residues to identify their role in FIXa and VWF interaction. This role was assessed employing surface plasmon resonance analysis studies and enzyme kinetic assays. RESULTS: Five surface-exposed hydrophobic residues unique to the FVIII C1 domain, ie, F2035, F2068, F2127, V2130, I2139 were identified. Functional analysis indicated that residues F2068, V2130, and especially F2127 contribute to VWF and/or FIXa interaction. Substitution into alanine of the also surface-exposed V2125, which is spatially next to F2127, affected only VWF binding. CONCLUSION: The surface-exposed hydrophobic residues in C1 domain contribute to cofactor function and VWF binding. These findings provide novel information on the fundamental role of the C1 domain in FVIII life cycle.


Asunto(s)
Hemostáticos , Factor de von Willebrand , Factor IXa , Factor VIII , Humanos , Dominios Proteicos
4.
Haematologica ; 105(6): 1695-1703, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31558672

RESUMEN

In the complex with von Willebrand factor (VWF) factor VIII (FVIII) is protected from rapid clearance from circulation. Although it has been established that the FVIII binding site resides in the N-terminal D'-D3 domains of VWF, detailed information about the amino acid regions that contribute to FVIII binding is still lacking. In the present study, hydrogen-deuterium exchange mass spectrometry was employed to gain insight into the FVIII binding region on VWF. To this end, time-dependent deuterium incorporation was assessed in D'-D3 and the FVIII-D'-D3 complex. Data showed reduced deuterium incorporation in the D' region Arg782-Cys799 in the FVIII-D'-D3 complex compared to D'-D3. This implies that this region interacts with FVIII. Site-directed mutagenesis of the six charged amino acids in Arg782-Cys799 into alanine residues followed by surface plasmon resonance analysis and solid phase binding studies revealed that replacement of Asp796 affected FVIII binding. A marked decrease in FVIII binding was observed for the D'-D3 Glu787Ala variant. The same was observed for D'-D3 variants in which Asp796 and Glu787 were replaced by Asn796 and Gln787. Site-directed mutagenesis of Leu786, which together with Glu787 and Cys789 forms a short helical region in the crystal structure of D'-D3, also had a marked impact on FVIII binding. The combined results show that the amino acid region Arg782-Cys799 is part of a FVIII binding surface. Our study provides new insight into FVIII-VWF complex formation and defects therein that may be associated with bleeding caused by markedly reduced levels of FVIII.


Asunto(s)
Factor VIII , Factor de von Willebrand , Sitios de Unión , Factor VIII/genética , Hemorragia , Humanos , Dominios Proteicos , Factor de von Willebrand/genética
5.
J Thromb Haemost ; 17(12): 2047-2055, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31519061

RESUMEN

BACKGROUND: Factor XI (FXI) is a zymogen in the coagulation pathway that, once activated, promotes haemostasis by activating factor IX (FIX). Substitution studies using apple domains of the homologous protein prekallikrein have identified that FIX binds to the apple 3 domain of FXI. However, the molecular changes upon activation of FXI or binding of FIX to FXIa have remained largely unresolved. OBJECTIVES: This study aimed to gain more insight in the FXI activation mechanism by identifying the molecular differences between FXI and FXIa, and in the conformational changes in FXIa induced by binding of FIX. METHODS: Hydrogen-deuterium exchange mass spectrometry was performed on FXI, FXIa, and FXIa in complex with FIX. RESULTS: Both activation and binding to FIX induced conformational changes at the interface between the catalytic domain and the apple domains of FXI(a)-more specifically at the loops connecting the apple domains. Moreover, introduction of FIX uniquely induced a reduction of deuterium uptake in the beginning of the apple 3 domain. CONCLUSIONS: We propose that the conformational changes of the catalytic domain upon activation increase the accessibility to the apple 3 domain to enable FIX binding. Moreover, our HDX MS results support the location of the proposed FIX binding site at the beginning of the apple 3 domain and suggest a mediating role in FIX binding for both loops adjacent to the apple 3 domain.


Asunto(s)
Factor IX/metabolismo , Factor XI/metabolismo , Factor XIa/metabolismo , Hemostasis , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Activación Enzimática , Factor IX/química , Factor XI/química , Factor XI/genética , Factor XIa/química , Factor XIa/genética , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad
6.
Elife ; 62017 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-28500756

RESUMEN

The flat Golgi cisterna is a highly conserved feature of eukaryotic cells, but how is this morphology achieved and is it related to its function in cargo sorting and export? A physical model of cisterna morphology led us to propose that sphingomyelin (SM) metabolism at the trans-Golgi membranes in mammalian cells essentially controls the structural features of a Golgi cisterna by regulating its association to curvature-generating proteins. An experimental test of this hypothesis revealed that affecting SM homeostasis converted flat cisternae into highly curled membranes with a concomitant dissociation of membrane curvature-generating proteins. These data lend support to our hypothesis that SM metabolism controls the structural organization of a Golgi cisterna. Together with our previously presented role of SM in controlling the location of proteins involved in glycosylation and vesicle formation, our data reveal the significance of SM metabolism in the structural organization and function of Golgi cisternae.


Asunto(s)
Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Esfingomielinas/metabolismo , Células HeLa , Humanos
7.
EMBO J ; 36(12): 1736-1754, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28495678

RESUMEN

Sphingolipids are membrane lipids globally required for eukaryotic life. The sphingolipid content varies among endomembranes with pre- and post-Golgi compartments being poor and rich in sphingolipids, respectively. Due to this different sphingolipid content, pre- and post-Golgi membranes serve different cellular functions. The basis for maintaining distinct subcellular sphingolipid levels in the presence of membrane trafficking and metabolic fluxes is only partially understood. Here, we describe a homeostatic regulatory circuit that controls sphingolipid levels at the trans-Golgi network (TGN). Specifically, we show that sphingomyelin production at the TGN triggers a signalling pathway leading to PtdIns(4)P dephosphorylation. Since PtdIns(4)P is required for cholesterol and sphingolipid transport to the trans-Golgi network, PtdIns(4)P consumption interrupts this transport in response to excessive sphingomyelin production. Based on this evidence, we envisage a model where this homeostatic circuit maintains a constant lipid composition in the trans-Golgi network and post-Golgi compartments, thus counteracting fluctuations in the sphingolipid biosynthetic flow.


Asunto(s)
Fosfatidilinositoles/metabolismo , Esfingolípidos/metabolismo , Red trans-Golgi/metabolismo , Células HeLa , Homeostasis , Humanos , Modelos Biológicos
8.
Mol Biol Cell ; 28(1): 141-151, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27807044

RESUMEN

Golgi-specific sialyltransferase (ST) expressed as a chimera with the rapamycin-binding domain of mTOR, FRB, relocates to the endoplasmic reticulum (ER) in cells exposed to rapamycin that also express invariant chain (Ii)-FKBP in the ER. This result has been taken to indicate that Golgi-resident enzymes cycle to the ER constitutively. We show that ST-FRB is trapped in the ER even without Ii-FKBP upon rapamycin addition. This is because ER-Golgi-cycling FKBP proteins contain a C-terminal KDEL-like sequence, bind ST-FRB in the Golgi, and are transported together back to the ER by KDEL receptor-mediated retrograde transport. Moreover, depletion of KDEL receptor prevents trapping of ST-FRB in the ER by rapamycin. Thus ST-FRB cycles artificially by binding to FKBP domain-containing proteins. In addition, Golgi-specific O-linked glycosylation of a resident ER protein occurs only upon artificial fusion of Golgi membranes with ER. Together these findings support the consensus view that there is no appreciable mixing of Golgi-resident enzymes with ER under normal conditions.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Transporte de Proteínas/fisiología , Animales , Transporte Biológico , Células COS , Chlorocebus aethiops , Aparato de Golgi/fisiología , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Mitosis/fisiología , Dominios Proteicos , Sistemas de Translocación de Proteínas , Receptores de Péptidos/metabolismo , Sialiltransferasas/metabolismo , Sirolimus , Serina-Treonina Quinasas TOR
9.
J Cell Biol ; 206(5): 609-18, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25179630

RESUMEN

Do lipids such as sphingomyelin (SM) that are known to assemble into specific membrane domains play a role in the organization and function of transmembrane proteins? In this paper, we show that disruption of SM homeostasis at the trans-Golgi network (TGN) by treatment of HeLa cells with d-ceramide-C6, which was converted together with phosphatidylcholine to short-chain SM and diacylglycerol by SM synthase, led to the segregation of Golgi-resident proteins from each other. We found that TGN46, which cycles between the TGN and the plasma membrane, was not sialylated by a sialyltransferase at the TGN and that this enzyme and its substrate TGN46 could not physically interact with each other. Our results suggest that SM organizes transmembrane proteins into functional enzymatic domains at the TGN.


Asunto(s)
Homeostasis , Esfingomielinas/metabolismo , Red trans-Golgi/enzimología , Glicosilación , Células HeLa , Humanos , Membranas Intracelulares/enzimología , Manosidasas/metabolismo , Glicoproteínas de Membrana/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas
10.
J Cell Biol ; 202(2): 241-50, 2013 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-23857769

RESUMEN

Here we report that the kinesin-5 motor Klp61F, which is known for its role in bipolar spindle formation in mitosis, is required for protein transport from the Golgi complex to the cell surface in Drosophila S2 cells. Disrupting the function of its mammalian orthologue, Eg5, in HeLa cells inhibited secretion of a protein called pancreatic adenocarcinoma up-regulated factor (PAUF) but, surprisingly, not the trafficking of vesicular stomatitis virus G protein (VSV-G) to the cell surface. We have previously reported that PAUF is transported from the trans-Golgi network (TGN) to the cell surface in specific carriers called CARTS that exclude VSV-G. Inhibition of Eg5 function did not affect the biogenesis of CARTS; however, their migration was delayed and they accumulated near the Golgi complex. Altogether, our findings reveal a surprising new role of Eg5 in nonmitotic cells in the facilitation of the transport of specific carriers, CARTS, from the TGN to the cell surface.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Drosophila/metabolismo , Aparato de Golgi/metabolismo , Cinesinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Proteínas Portadoras/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Retículo Endoplásmico/metabolismo , Aparato de Golgi/genética , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intercelular , Cinesinas/genética , Lectinas/metabolismo , Glicoproteínas de Membrana/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Transporte de Proteínas , Transfección , Proteínas del Envoltorio Viral/genética
11.
EMBO J ; 31(24): 4535-46, 2012 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-23178595

RESUMEN

Sphingomyelin and cholesterol can assemble into domains and segregate from other lipids in the membranes. These domains are reported to function as platforms for protein transport and signalling. Do similar domains exist in the Golgi membranes and are they required for protein secretion? We tested this hypothesis by using D-ceramide-C6 to manipulate lipid homeostasis of the Golgi membranes. Lipidomics of the Golgi membranes isolated from D-ceramide-C6-treated HeLa cells revealed an increase in the levels of C6-sphingomyelin, C6-glucosylceramide, and diacylglycerol. D-ceramide-C6 treatment in HeLa cells inhibited transport carrier formation at the Golgi membranes without affecting the fusion of incoming carriers. The defect in protein secretion as a result of D-ceramide-C6 treatment was alleviated by knockdown of the sphingomyelin synthases 1 and 2. C6-sphingomyelin prevented liquid-ordered domain formation in giant unilamellar vesicles and reduced the lipid order in the Golgi membranes of HeLa cells. These findings highlight the importance of a regulated production and organization of sphingomyelin in the biogenesis of transport carriers at the Golgi membranes.


Asunto(s)
Aparato de Golgi/química , Aparato de Golgi/fisiología , Lípidos de la Membrana/análisis , Microdominios de Membrana/fisiología , Proteínas/metabolismo , Esfingomielinas/metabolismo , Vesículas Transportadoras/fisiología , Ceramidas/farmacología , Diglicéridos , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Lípidos de la Membrana/aislamiento & purificación , Microdominios de Membrana/química , Microscopía Electrónica , Microscopía Fluorescente , Oligonucleótidos/genética , Interferencia de ARN , Espectrometría de Fluorescencia , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Vesículas Transportadoras/química
12.
EMBO J ; 31(20): 3976-90, 2012 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-22909819

RESUMEN

We have isolated a membrane fraction enriched in a class of transport carriers that form at the trans Golgi network (TGN) and are destined for the cell surface in HeLa cells. Protein kinase D (PKD) is required for the biogenesis of these carriers that contain myosin II, Rab6a, Rab8a, and synaptotagmin II, as well as a number of secretory and plasma membrane-specific cargoes. Our findings reveal a requirement for myosin II in the migration of these transport carriers but not in their biogenesis per se. Based on the cargo secreted by these carriers we have named them CARTS for CARriers of the TGN to the cell Surface. Surprisingly, CARTS are distinct from the carriers that transport vesicular stomatitis virus (VSV)-G protein and collagen I from the TGN to the cell surface. Altogether, the identification of CARTS provides a valuable means to understand TGN to cell surface traffic.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Vesículas Transportadoras/clasificación , Red trans-Golgi/metabolismo , Transporte Biológico/fisiología , Membrana Celular/metabolismo , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intercelular , Lectinas/metabolismo , Proteínas de la Membrana/metabolismo , Miosina Tipo II/fisiología , Proteína Quinasa C/metabolismo , Sinaptotagmina II/metabolismo , Vesículas Transportadoras/fisiología , Vesículas Transportadoras/ultraestructura , Proteínas de Unión al GTP rab/metabolismo
13.
Biochim Biophys Acta ; 1818(9): 2175-83, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22560898

RESUMEN

Golgi-Associated Plant Pathogenesis-Related protein 1 (GAPR-1) is a mammalian protein that belongs to the superfamily of plant pathogenesis related proteins group 1 (PR-1). GAPR-1 is a peripheral membrane-binding protein that strongly associates with lipid-enriched microdomains at the cytosolic leaflet of Golgi membranes. Little is known about the mechanism of GAPR-1 interaction with membranes. We previously suggested that dimerization plays a role in the function of GAPR-1 and here we report that phytic acid (inositol hexakisphosphate) induces dimerization of GAPR-1 in solution. Elucidation of the crystal structure of GAPR-1 in the presence of phytic acid revealed that the GAPR-1 dimer differs from the previously published GAPR-1 dimer structure. In this structure, one of the monomeric subunits of the crystallographic dimer is rotated by 28.5°. To study the GAPR-1 dimerization properties, we investigated the interaction with liposomes in a light scattering assay and by flow cytometry. In the presence of negatively charged lipids, GAPR-1 caused a rapid and stable tethering of liposomes. [D81K]GAPR-1, a mutant predicted to stabilize the IP6-induced dimer conformation, also caused tethering of liposomes. [A68K]GAPR-1 however, a mutant predicted to stabilize the non-rotated dimer conformation, is capable of binding to liposomes but did not cause liposome tethering. Our combined data suggest that the charge properties of the lipid bilayer can regulate GAPR-1 dynamics as a potential mechanism to modulate GAPR-1 function.


Asunto(s)
Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Membrana Celular/metabolismo , Cromatografía en Gel , Cristalografía por Rayos X/métodos , Dimerización , Citometría de Flujo/métodos , Aparato de Golgi/metabolismo , Humanos , Lípidos/química , Liposomas/química , Liposomas/metabolismo , Modelos Biológicos , Modelos Moleculares , Conformación Molecular , Mutación , Fosfatidilinositoles/química , Ácido Fítico/química , Plásmidos/metabolismo , Conformación Proteica
14.
Dev Cell ; 20(5): 652-62, 2011 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-21571222

RESUMEN

Actin-severing proteins ADF/cofilin are required for the sorting of secretory cargo at the trans-Golgi network (TGN) in mammalian cells. How do these cytoplasmic proteins interact with the cargoes in the lumen of the TGN? Put simply, how are these two sets of proteins connected across the TGN membrane? Mass spectrometry of cofilin1 immunoprecipitated from HeLa cells revealed the presence of actin and the Ca(2+) ATPase SPCA1. Moreover, cofilin1 was localized to the TGN and bound to SPCA1 via dynamic actin. SPCA1 knockdown, like ADF/cofilin1 knockdown, inhibited Ca(2+) uptake into the TGN and caused missorting of secretory cargo. These defects were rescued by the overexpression of the TGN-localized SPCA1. We propose that ADF/cofilin-dependent severing of actin filaments exposes and promotes the activation of SPCA1, which pumps Ca(2+) into the lumen of the TGN for the sorting of the class of secretory cargo that binds Ca(2+).


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , ATPasas Transportadoras de Calcio/metabolismo , Destrina/metabolismo , Retículo Endoplásmico/metabolismo , Red trans-Golgi/metabolismo , Calcio/antagonistas & inhibidores , Calcio/metabolismo , Células Cultivadas , Células HeLa , Humanos
15.
Mol Membr Biol ; 27(2-3): 81-91, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20095951

RESUMEN

Golgi-Associated Plant Pathogenesis-Related protein 1 (GAPR-1) is a mammalian protein that belongs to the superfamily of plant pathogenesis-related proteins group 1 (PR-1). GAPR-1 strongly associates with lipid rafts at the cytosolic leaflet of the Golgi membrane. The myristoyl moiety at the N-terminus of GAPR-1 contributes to membrane binding but is not sufficient for stable membrane anchorage. GAPR-1 is positively charged at physiological pH, which allows for additional membrane interactions with proteins or lipids. To determine the potential contribution of lipids to membrane binding of GAPR-1, we used a liposome binding assay. Here we report that non-myristoylated GAPR-1 stably binds liposomes that contain the negatively charged lipids phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, or phosphatidic acid. GAPR-1 displays the highest preference for phosphatidic acid-containing liposomes. In contrast, lysozyme, which contains a similar surface charge, did not bind to these liposomes, except for a weak membrane association with PA-containing liposomes. Interestingly, GAPR-1 binds to phosphatidylinositol with unusual characteristics. Denaturation or organic extraction of GAPR-1 does not result in dissociation of phosphatidylinositol from GAPR-1. The association of phosphatidylinositol with GAPR-1 results in a diffuse gel-shift in SDS-PAGE. Mass spectrometric analysis of gel-shifted GAPR-1 showed the association of up to 3 molecules of phosphatidylinositol with GAPR-1. These results suggest that the lipid composition contributes to the GAPR-1 binding to biological membranes.


Asunto(s)
Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatidilinositoles/metabolismo , Animales , Proteínas de la Membrana/química , Unión Proteica , Temperatura , Factores de Tiempo
16.
Prog Lipid Res ; 49(1): 1-26, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19638285

RESUMEN

Lipids were long believed to have a structural role in biomembranes and a role in energy storage utilizing cellular lipid droplets and plasma lipoproteins. Research over the last decades has identified an additional role of lipids in cellular signaling, membrane microdomain organization and dynamics, and membrane trafficking. These properties make lipids an attractive target for pathogens to modulate host cell processes in order to allow their survival and replication. In this review we will summarize the often ingenious strategies of pathogens to modify the lipid homeostasis of host cells, allowing them to divert cellular processes. To this end pathogens take full advantage of the complexity of the lipidome. The examples are categorized in generalized and emerging principles describing the involvement of lipids in host-pathogen interactions. Several pathogens are described that simultaneously induce multiple changes in the host cell signaling and trafficking mechanisms. Elucidation of these pathogen-induced changes may have important implications for drug development. The emergence of high-throughput lipidomic techniques will allow the description of changes of the host cell lipidome at the level of individual molecular lipid species and the identification of lipid biomarkers.


Asunto(s)
Interacciones Huésped-Patógeno , Metabolismo de los Lípidos , Colesterol/metabolismo , Ácidos Grasos/metabolismo , Microdominios de Membrana/metabolismo , Fosfatidilinositoles/metabolismo , Fosfolipasas/metabolismo , Transducción de Señal , Esfingolípidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA