Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cancer Res ; 78(9): 2356-2369, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29440168

RESUMEN

FOXO transcription factors are regulators of cellular homeostasis and putative tumor suppressors, yet the role of FOXO in cancer progression remains to be determined. The data on FOXO function, particularly for epithelial cancers, are fragmentary and come from studies that focused on isolated aspects of cancer. To clarify the role of FOXO in epithelial cancer progression, we characterized the effects of inducible FOXO activation and loss in a mouse model of metastatic invasive lobular carcinoma. Strikingly, either activation or loss of FOXO function suppressed tumor growth and metastasis. We show that the multitude of cellular processes critically affected by FOXO function include proliferation, survival, redox homeostasis, and PI3K signaling, all of which must be carefully balanced for tumor cells to thrive.Significance: FOXO proteins are not solely tumor suppressors, but also support tumor growth and metastasis by regulating a multitude of cellular processes essential for tumorigenesis. Cancer Res; 78(9); 2356-69. ©2018 AACR.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Factores de Transcripción Forkhead/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Factores de Transcripción Forkhead/genética , Humanos , Ratones , Ratones Noqueados , Metástasis de la Neoplasia , Oxidación-Reducción , Transducción de Señal , Carga Tumoral
2.
J Orthop Res ; 36(1): 138-148, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28681971

RESUMEN

The difference in the adult height of mammals, and hence in endochondral bone formation, is not yet fully understood and may serve to identify targets for bone and cartilage regeneration. In line with this hypothesis, the intra-species disparity between the adult height of Great Danes and Miniature Poodles was investigated at a transcriptional level. Microarray analysis of the growth plate of five Great Danes and five Miniature Poodles revealed 2,981 unique genes that were differentially expressed, including many genes with an unknown role in skeletal development. A signaling pathway impact analysis indicated activation of the cell cycle, extracellular matrix receptor interaction and the tight junction pathway, and inhibition of pathways associated with inflammation and the complement cascade. In additional validation steps, the gene expression profile of the separate growth plate zones for both dog breeds were determined. Given that the BMP signaling is known for its crucial role in skeletal development and fracture healing, and BMP-2 is used in orthopaedic and spine procedures for bone augmentation, further investigations concentrated on the BMP pathway.The canonical BMP-2 and BMP-6 signaling pathway was activated in the Great Danes compared to Miniature Poodles. In conclusion, investigating the differential expression of genes involved in endochondral bone formation in small and large breed dogs, could be a game changing strategy to provide new insights in growth plate development and identify new targets for bone and cartilage regeneration. © 2017 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 36:138-148, 2018.


Asunto(s)
Perfilación de la Expresión Génica , Placa de Crecimiento/metabolismo , Osteogénesis , Animales , Proteínas Morfogenéticas Óseas/fisiología , Perros , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal/fisiología
3.
J Immunol ; 198(10): 4062-4073, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28416598

RESUMEN

Type I IFNs play critical roles in orchestrating the antiviral defense by inducing direct antiviral activities and shaping the adaptive immune response. Viruses have evolved numerous strategies to specifically interfere with IFN production or its downstream mediators, thereby allowing successful infection of the host to occur. The prototypic human gammaherpesvirus EBV, which is associated with infectious mononucleosis and malignant tumors, harbors many immune-evasion proteins that manipulate the adaptive and innate immune systems. In addition to proteins, the virus encodes >40 mature microRNAs for which the functions remain largely unknown. In this article, we identify EBV-encoded miR-BART16 as a novel viral immune-evasion factor that interferes with the type I IFN signaling pathway. miR-BART16 directly targets CREB-binding protein, a key transcriptional coactivator in IFN signaling, thereby inducing CREB-binding protein downregulation in EBV-transformed B cells and gastric carcinoma cells. miR-BART16 abrogates the production of IFN-stimulated genes in response to IFN-α stimulation and it inhibits the antiproliferative effect of IFN-α on latently infected BL cells. By obstructing the type I IFN-induced antiviral response, miR-BART16 provides a means to facilitate the establishment of latent EBV infection and enhance viral replication.


Asunto(s)
Herpesvirus Humano 4/genética , Interferón Tipo I/metabolismo , MicroARNs/metabolismo , ARN Viral/metabolismo , Transducción de Señal , Proteína de Unión a CREB/metabolismo , Línea Celular , Herpesvirus Humano 4/inmunología , Interacciones Huésped-Patógeno , Humanos , Evasión Inmune , Inmunidad Innata , Interferón Tipo I/inmunología , MicroARNs/genética , ARN Viral/genética , Replicación Viral
4.
EMBO J ; 36(3): 274-290, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27979920

RESUMEN

An important distinction is frequently made between constitutively expressed housekeeping genes versus regulated genes. Although generally characterized by different DNA elements, chromatin architecture and cofactors, it is not known to what degree promoter classes strictly follow regulatability rules and which molecular mechanisms dictate such differences. We show that SAGA-dominated/TATA-box promoters are more responsive to changes in the amount of activator, even compared to TFIID/TATA-like promoters that depend on the same activator Hsf1. Regulatability is therefore an inherent property of promoter class. Further analyses show that SAGA/TATA-box promoters are more dynamic because TATA-binding protein recruitment through SAGA is susceptible to removal by Mot1. In addition, the nucleosome configuration upon activator depletion shifts on SAGA/TATA-box promoters and seems less amenable to preinitiation complex formation. The results explain the fundamental difference between housekeeping and regulatable genes, revealing an additional facet of combinatorial control: an activator can elicit a different response dependent on core promoter class.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Genes Esenciales , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Factor de Transcripción TFIID/genética , Activación Transcripcional , Adenosina Trifosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Proteína de Unión a TATA-Box/metabolismo
5.
Sci Rep ; 6: 19411, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26797113

RESUMEN

The primary limiting factor for effective IVF treatment is successful embryo implantation. Recurrent implantation failure (RIF) is a condition whereby couples fail to achieve pregnancy despite consecutive embryo transfers. Here we describe the collection of gene expression profiles from mid-luteal phase endometrial biopsies (n = 115) from women experiencing RIF and healthy controls. Using a signature discovery set (n = 81) we identify a signature containing 303 genes predictive of RIF. Independent validation in 34 samples shows that the gene signature predicts RIF with 100% positive predictive value (PPV). The strength of the RIF associated expression signature also stratifies RIF patients into distinct groups with different subsequent implantation success rates. Exploration of the expression changes suggests that RIF is primarily associated with reduced cellular proliferation. The gene signature will be of value in counselling and guiding further treatment of women who fail to conceive upon IVF and suggests new avenues for developing intervention.


Asunto(s)
Implantación del Embrión/genética , Endometrio/metabolismo , Fertilización In Vitro , Perfilación de la Expresión Génica , Infertilidad Femenina/genética , Adulto , Biopsia , Endometrio/patología , Femenino , Regulación de la Expresión Génica , Humanos , Embarazo , Recurrencia , Reproducibilidad de los Resultados
6.
BMC Biol ; 13: 112, 2015 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-26700642

RESUMEN

BACKGROUND: Genetic interactions, or non-additive effects between genes, play a crucial role in many cellular processes and disease. Which mechanisms underlie these genetic interactions has hardly been characterized. Understanding the molecular basis of genetic interactions is crucial in deciphering pathway organization and understanding the relationship between genotype, phenotype and disease. RESULTS: To investigate the nature of genetic interactions between gene-specific transcription factors (GSTFs) in Saccharomyces cerevisiae, we systematically analyzed 72 GSTF pairs by gene expression profiling double and single deletion mutants. These pairs were selected through previously published growth-based genetic interactions as well as through similarity in DNA binding properties. The result is a high-resolution atlas of gene expression-based genetic interactions that provides systems-level insight into GSTF epistasis. The atlas confirms known genetic interactions and exposes new ones. Importantly, the data can be used to investigate mechanisms that underlie individual genetic interactions. Two molecular mechanisms are proposed, "buffering by induced dependency" and "alleviation by derepression". CONCLUSIONS: These mechanisms indicate how negative genetic interactions can occur between seemingly unrelated parallel pathways and how positive genetic interactions can indirectly expose parallel rather than same-pathway relationships. The focus on GSTFs is important for understanding the transcription regulatory network of yeast as it uncovers details behind many redundancy relationships, some of which are completely new. In addition, the study provides general insight into the complex nature of epistasis and proposes mechanistic models for genetic interactions, the majority of which do not fall into easily recognizable within- or between-pathway relationships.


Asunto(s)
Epigénesis Genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Perfilación de la Expresión Génica , Biblioteca de Genes , Ontología de Genes , Anotación de Secuencia Molecular , Mutación , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
7.
Biochem J ; 469(2): 289-98, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25990325

RESUMEN

Activity of FOXO (forkhead box O) transcription factors is inhibited by growth factor-PI3K (phosphoinositide 3-kinase)-PKB (protein kinase B)/Akt signalling to control a variety of cellular processes including cell cycle progression. Through comparative analysis of a number of microarray datasets we identified a set of genes commonly regulated by FOXO proteins and PI3K-PKB/Akt, which includes CTDSP2 (C-terminal domain small phosphatase 2). We validated CTDSP2 as a genuine FOXO target gene and show that ectopic CTDSP2 can induce cell cycle arrest. We analysed transcriptional regulation after CTDSP2 expression and identified extensive regulation of genes involved in cell cycle progression, which depends on the phosphatase activity of CTDSP2. The most notably regulated gene is the CDK (cyclin-dependent kinase) inhibitor p21(Cip1/Waf1) and in the present study we show that p21(Cip1/Waf1) is partially responsible for the cell cycle arrest through decreasing cyclin-CDK activity. Our data suggest that CTDSP2 induces p21(Cip1/Waf1) through increasing the activity of Ras. As has been described previously, Ras induces p21(Cip1/Waf1) through p53-dependent and p53-independent pathways and indeed both p53 and MEK inhibition can mitigate the CTDSP2-induced p21(Cip1/Waf1) mRNA up-regulation. In support of Ras activation by CTDSP2, depletion of endogenous CTDSP2 results in reduced Ras activity and thus CTDSP2 seems to be part of a larger set of genes regulated by FOXO proteins, which increase growth factor signalling upon FOXO activation.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Factores de Transcripción Forkhead/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas ras/metabolismo , Animales , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica/fisiología , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Células 3T3 NIH , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas Fosfatasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transcripción Genética/fisiología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas ras/genética
8.
Mol Syst Biol ; 10: 732, 2014 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-24952590

RESUMEN

Growth condition perturbation or gene function disruption are commonly used strategies to study cellular systems. Although it is widely appreciated that such experiments may involve indirect effects, these frequently remain uncharacterized. Here, analysis of functionally unrelated Saccharyomyces cerevisiae deletion strains reveals a common gene expression signature. One property shared by these strains is slower growth, with increased presence of the signature in more slowly growing strains. The slow growth signature is highly similar to the environmental stress response (ESR), an expression response common to diverse environmental perturbations. Both environmental and genetic perturbations result in growth rate changes. These are accompanied by a change in the distribution of cells over different cell cycle phases. Rather than representing a direct expression response in single cells, both the slow growth signature and ESR mainly reflect a redistribution of cells over different cell cycle phases, primarily characterized by an increase in the G1 population. The findings have implications for any study of perturbation that is accompanied by growth rate changes. Strategies to counter these effects are presented and discussed.


Asunto(s)
Eliminación de Gen , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/genética , Ciclo Celular , Medios de Cultivo , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Saccharomyces cerevisiae/clasificación , Saccharomyces cerevisiae/citología , Estrés Fisiológico
9.
PLoS One ; 9(6): e98258, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24886914

RESUMEN

Examination of gene functions in specific tumor types improves insight in tumorigenesis and helps design better treatments. Due to the rarity of histiocytic/dendritic cell sarcoma in humans, it is difficult to accrue such knowledge. Therefore, comparative research of these cancers in predisposed dog breeds, such as the Flatcoated retriever, can be of value. Histiocytic sarcoma in the dog can be grouped into a soft tissue- and visceral form. The soft tissue form at first is localized, while the visceral form progresses more quickly to a terminal state, which might be related to variations in gene expression. Microarray analyses were performed on fresh-frozen tissue from Flatcoated retrievers with either soft tissue- or visceral histiocytic sarcoma. Expression differences of ten most significantly differentially expressed genes were validated with quantitative real-time PCR (q PCR) analyses. Q PCR analyses confirmed the significantly aberrant expression of three of the selected genes: C6 was up-regulated; CLEC12A and CCL5 were down-regulated in the visceral histiocytic sarcoma compared to the soft tissue form. The findings of our study indicate that these two forms of histiocytic sarcoma in the dog display a variation in gene expression and warrant analysis of functional changes in the expression of those genes in these rare sarcomas in man.


Asunto(s)
Enfermedades de los Perros/genética , Predisposición Genética a la Enfermedad , Sarcoma Histiocítico/veterinaria , Animales , Secuencia de Bases , Cartilla de ADN , Perros , Perfilación de la Expresión Génica , Sarcoma Histiocítico/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
10.
Cell ; 157(3): 740-52, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24766815

RESUMEN

To understand regulatory systems, it would be useful to uniformly determine how different components contribute to the expression of all other genes. We therefore monitored mRNA expression genome-wide, for individual deletions of one-quarter of yeast genes, focusing on (putative) regulators. The resulting genetic perturbation signatures reflect many different properties. These include the architecture of protein complexes and pathways, identification of expression changes compatible with viability, and the varying responsiveness to genetic perturbation. The data are assembled into a genetic perturbation network that shows different connectivities for different classes of regulators. Four feed-forward loop (FFL) types are overrepresented, including incoherent type 2 FFLs that likely represent feedback. Systematic transcription factor classification shows a surprisingly high abundance of gene-specific repressors, suggesting that yeast chromatin is not as generally restrictive to transcription as is often assumed. The data set is useful for studying individual genes and for discovering properties of an entire regulatory system.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Técnicas Genéticas , Saccharomyces cerevisiae/genética , Transcriptoma , Eliminación de Gen , Técnicas de Inactivación de Genes
11.
PLoS One ; 8(12): e80495, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24324601

RESUMEN

Transcription termination in Saccharomyces cerevisiae can be performed by at least two distinct pathways and is influenced by the phosphorylation status of the carboxy-terminal domain (CTD) of RNA polymerase II (Pol II). Late termination of mRNAs is performed by the CPF/CF complex, the recruitment of which is dependent on CTD-Ser2 phosphorylation (Ser2P). Early termination of shorter cryptic unstable transcripts (CUTs) and small nucleolar/nuclear RNAs (sno/snRNAs) is performed by the Nrd1-Nab3-Sen1 (NNS) complex that binds phosphorylated CTD-Ser5 (Ser5P) via the CTD-interacting domain (CID) of Nrd1p. In this study, mutants of the different termination pathways were compared by genome-wide expression analysis. Surprisingly, the expression changes observed upon loss of the CTD-Ser2 kinase Ctk1p are more similar to those derived from alterations in the Ser5P-dependent NNS pathway, than from loss of CTD-Ser2P binding factors. Tiling array analysis of ctk1Δ cells reveals readthrough at snoRNAs, at many cryptic unstable transcripts (CUTs) and stable uncharacterized transcripts (SUTs), but only at some mRNAs. Despite the suggested predominant role in termination of mRNAs, we observed that a CTK1 deletion or a Pol II CTD mutant lacking all Ser2 positions does not result in a global mRNA termination defect. Rather, termination defects in these strains are widely observed at NNS-dependent genes. These results indicate that Ctk1p and Ser2 CTD phosphorylation have a wide impact in termination of small non-coding RNAs but only affect a subset of mRNA coding genes.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas Serina-Treonina Quinasas/genética , ARN Polimerasa II/genética , ARN Mensajero/genética , ARN Pequeño no Traducido/genética , Saccharomyces cerevisiae/genética , Transcripción Genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Perfilación de la Expresión Génica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Polimerasa II/metabolismo , ARN Mensajero/metabolismo , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , ARN Pequeño no Traducido/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Nat Commun ; 4: 2656, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24141283

RESUMEN

Transcriptional coregulators, including the acetyltransferase Tip60, have a key role in complex cellular processes such as differentiation. Whereas post-translational modifications have emerged as an important mechanism to regulate transcriptional coregulator activity, the identification of the corresponding demodifying enzymes has remained elusive. Here we show that the expression of the Tip60 protein, which is essential for adipocyte differentiation, is regulated through polyubiquitination on multiple residues. USP7, a dominant deubiquitinating enzyme in 3T3-L1 adipocytes and mouse adipose tissue, deubiquitinates Tip60 both in intact cells and in vitro and increases Tip60 protein levels. Furthermore, inhibition of USP7 expression and activity decreases adipogenesis. Transcriptome analysis reveals several cell cycle genes to be co-regulated by both Tip60 and USP7. Knockdown of either factor results in impaired mitotic clonal expansion, an early step in adipogenesis. These results reveal deubiquitination of a transcriptional coregulator to be a key mechanism in the regulation of early adipogenesis.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis/genética , Tejido Adiposo/metabolismo , Histona Acetiltransferasas/genética , Procesamiento Proteico-Postraduccional , Transactivadores/genética , Proteasas Ubiquitina-Específicas/genética , Células 3T3-L1 , Adipocitos/citología , Tejido Adiposo/citología , Animales , Diferenciación Celular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Histona Acetiltransferasas/antagonistas & inhibidores , Histona Acetiltransferasas/metabolismo , Histonas/genética , Histonas/metabolismo , Lisina Acetiltransferasa 5 , Masculino , Ratones , Ratones Endogámicos C57BL , Mitosis , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Transactivadores/antagonistas & inhibidores , Transactivadores/metabolismo , Transcripción Genética , Peptidasa Específica de Ubiquitina 7 , Proteasas Ubiquitina-Específicas/antagonistas & inhibidores , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación
13.
PLoS One ; 8(8): e71094, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23936488

RESUMEN

BACKGROUND: The determination of altered expression of genes in specific tumor types and their effect upon cellular processes may create insight in tumorigenesis and help to design better treatments. The Flatcoated retriever is a dog breed with an exceptionally high incidence of histiocytic sarcomas. The breed develops two distinct entities of histiocytic neoplasia, a soft tissue form and a visceral form. Gene expression studies of these tumors have value for comparable human diseases such as histiocytic/dendritic cell sarcoma for which knowledge is difficult to accrue due to their rare occurrence. In addition, such studies may help in the search for genetic aberrations underlying the genetic predisposition in this dog breed. METHODS: Microarray analysis and pathway analyses were performed on fresh-frozen tissues obtained from Flatcoated retrievers with localized, soft tissue histiocytic sarcomas (STHS) and disseminated, visceral histiocytic sarcomas (VHS) and on normal canine spleens from various breeds. Expression differences of nine genes were validated with quantitative real-time PCR (qPCR) analyses. RESULTS: QPCR analyses identified the significantly altered expression of nine genes; PPBP, SpiC, VCAM1, ENPEP, ITGAD (down-regulated), and GTSF1, Col3a1, CD90 and LUM (up-regulated) in the comparison of both the soft tissue and the visceral form with healthy spleen. DAVID pathway analyses revealed 24 pathways that were significantly involved in the development of HS in general, most of which were involved in the DNA repair and replication process. CONCLUSIONS: This study identified altered expression of nine genes not yet implicated in histiocytic sarcoma manifestations in the dog nor in comparable human histiocytic/dendritic sarcomas. Exploration of the downside effect of canine inbreeding strategies for the study of similar sarcomas in humans might also lead to the identification of genes related to these rare malignancies in the human.


Asunto(s)
Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , Sarcoma Histiocítico/genética , Animales , Modelos Animales de Enfermedad , Perros , Femenino , Humanos , Masculino , Bazo/metabolismo
14.
PLoS One ; 8(6): e65628, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23785440

RESUMEN

The Saccharomyces cerevisiae Slx5/8 complex is the founding member of a recently defined class of SUMO-targeted ubiquitin ligases (STUbLs). Slx5/8 has been implicated in genome stability and transcription, but the precise contribution is unclear. To characterise Slx5/8 function, we determined genome-wide changes in gene expression upon loss of either subunit. The majority of mRNA changes are part of a general stress response, also exhibited by mutants of other genome integrity pathways and therefore indicative of an indirect effect on transcription. Genome-wide binding analysis reveals a uniquely centromeric location for Slx5. Detailed phenotype analyses of slx5Δ and slx8Δ mutants show severe mitotic defects that include aneuploidy, spindle mispositioning, fish hooks and aberrant spindle kinetics. This is associated with accumulation of the PP2A regulatory subunit Rts1 at centromeres prior to entry into anaphase. Knockdown of the human STUbL orthologue RNF4 also results in chromosome segregation errors due to chromosome bridges. The study shows that STUbLs have a conserved role in maintenance of chromosome stability and links SUMO-dependent ubiquitination to a centromere-specific function during mitosis.


Asunto(s)
Centrómero/metabolismo , Inestabilidad Cromosómica , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Aneuploidia , Centrómero/genética , Mapeo Cromosómico , Eliminación de Gen , Genoma Fúngico , Inestabilidad Genómica , Metafase , Mutación , Fenotipo , Plásmidos/genética , Unión Proteica , Proteína Fosfatasa 2/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Huso Acromático/metabolismo , Estrés Fisiológico , Ubiquitina-Proteína Ligasas/genética
15.
Cell Rep ; 3(4): 1071-9, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23545502

RESUMEN

The functional organization of eukaryotic genomes correlates with specific patterns of histone methylations. Regulatory regions in genomes such as enhancers and promoters differ in their extent of methylation of histone H3 at lysine-4 (H3K4), but it is largely unknown how the different methylation states are specified and controlled. Here, we show that the Kdm5c/Jarid1c/SMCX member of the Kdm5 family of H3K4 demethylases can be recruited to both enhancer and promoter elements in mouse embryonic stem cells and in neuronal progenitor cells. Knockdown of Kdm5c deregulates transcription via local increases in H3K4me3. Our data indicate that by restricting H3K4me3 modification at core promoters, Kdm5c dampens transcription, but at enhancers Kdm5c stimulates their activity. Remarkably, an impaired enhancer function activates the intrinsic promoter activity of Kdm5c-bound distal elements. Our results demonstrate that the Kdm5c demethylase plays a crucial and dynamic role in the functional discrimination between enhancers and core promoters.


Asunto(s)
Histonas/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Animales , Sitios de Unión , Células Cultivadas , Células Madre Embrionarias , Histona Demetilasas , Histonas/genética , Metilación , Ratones , Oxidorreductasas N-Desmetilantes/antagonistas & inhibidores , Oxidorreductasas N-Desmetilantes/genética , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Proteína Elk-1 con Dominio ets/genética , Proteína Elk-1 con Dominio ets/metabolismo
16.
PLoS One ; 8(2): e57662, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23451256

RESUMEN

Congenital portosystemic shunts are developmental anomalies of the splanchnic vascular system that cause portal blood to bypass the liver. Large-breed dogs are predisposed for intrahepatic portosystemic shunts (IHPSS) and small-breed dogs for extrahepatic portosystemic shunts (EHPSS). While the phenotype resulting from portal bypass of the liver of the two types of shunt is identical, the genotype and molecular pathways involved are probably different. The aim of this study was to gain insight into the pathways involved in the different types of portosystemic shunting. Microarray analysis of mRNA expression in liver tissue from dogs with EHPSS and IHPSS revealed that the expression of 26 genes was altered in either IHPSS or EHPSS samples compared with that in liver samples from control dogs. Quantitative real-time PCR of these genes in 14 IHPSS, 17 EHPSS, and 8 control liver samples revealed a significant differential expression of ACBP, CCBL1, GPC3, HAMP, PALLD, VCAM1, and WEE1. Immunohistochemistry and Western blotting confirmed an increased expression of VCAM1 in IHPSS but its absence in EHPSS, an increased WEE1 expression in IHPSS but not in EHPSS, and a decreased expression of CCBL1 in both shunt types. Regarding their physiologic functions, these findings may indicate a causative role for VCAM1 in EHPSS [corrected] and WEE1 for IHPSS. CCBL1 could be an interesting candidate to study not yet elucidated aspects in the pathophysiology of hepatic encephalopathy.


Asunto(s)
Enfermedades de los Perros/genética , Vena Porta/metabolismo , Malformaciones Vasculares/veterinaria , Animales , Enfermedades de los Perros/congénito , Enfermedades de los Perros/cirugía , Perros , Expresión Génica , Encefalopatía Hepática/genética , Encefalopatía Hepática/veterinaria , Hígado/irrigación sanguínea , Hígado/metabolismo , Fenotipo , Vena Porta/anomalías , Vena Porta/cirugía , ARN Mensajero/genética , Transcriptoma , Malformaciones Vasculares/genética , Malformaciones Vasculares/cirugía
17.
PLoS One ; 8(3): e57973, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23472125

RESUMEN

The aryl hydrocarbon receptor (AHR) mediates biological responses to toxic chemicals. An unexpected role for AHR in vascularization was suggested when mice lacking AHR displayed impaired closure of the ductus venosus after birth, as did knockout mice for aryl hydrocarbon receptor interacting protein (AIP) and aryl hydrocarbon receptor nuclear translocator (ARNT). The resulting intrahepatic portosystemic shunts (IHPSS) are frequently diagnosed in specific dog breeds, such as the Irish wolfhound. We compared the expression of components of the AHR pathway in healthy Irish wolfhounds and dogs with IHPSS. To this end, we analyzed the mRNA expression in the liver of AHR,AIP, ARNT, and other genes involved in this pathway, namely, those for aryl hydrocarbon receptor nuclear translocator 2 (ARNT2), hypoxia inducible factor 1alpha (HIF1A), heat shock protein 90AA1 (HSP90AA1), cytochromes P450 (CYP1A1, CYP1A2, and CYP1B1), vascular endothelial growth factor A (VEGFA), nitric oxide synthesase 3 (NOS3), and endothelin (EDN1). The observed low expression of AHR mRNA in the Irish wolfhounds is in associated with a LINE-1 insertion in intron 2, for which these dogs were homozygous. Down regulation in Irish wolfhounds was observed for AIP, ARNT2, CYP1A2, CYP1B1 and HSP90AA1 expression, whereas the expression of HIF1A was increased. Immunohistochemistry revealed lower levels of AHR, HIF1A, and VEGFA protein in the nucleus and lower levels of ARNT and HSP90AA1 protein in the cytoplasm of the liver cells of Irish wolfhounds. The impaired expression of HSP90AA1 could trigger the observed differences in mRNA and protein levels and therefore explain the link between two very different functions of AHR: regulation of the closure of the ductus venosus and the response to toxins.


Asunto(s)
Regulación de la Expresión Génica , Proteínas HSP90 de Choque Térmico/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Citoplasma/metabolismo , Perros , Femenino , Perfilación de la Expresión Génica , Ligamiento Genético , Hígado/metabolismo , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Sistemas de Lectura Abierta , Linaje , ARN Mensajero/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ADN
18.
Arthritis Res Ther ; 15(1): R23, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23360510

RESUMEN

INTRODUCTION: Early degeneration of the intervertebral disc (IVD) involves a change in cellular differentiation from notochordal cells (NCs) in the nucleus pulposus (NP) to chondrocyte-like cells (CLCs). The purpose of this study was to investigate the gene expression profiles involved in this process using NP tissue from non-chondrodystrophic and chondrodystrophic dogs, a species with naturally occurring IVD degeneration. METHODS: Dual channel DNA microarrays were used to compare 1) healthy NP tissue containing only NCs (NC-rich), 2) NP tissue with a mixed population of NCs and CLCs (Mixed), and 3) NP tissue containing solely CLCs (CLC-rich) in both non-chondrodystrophic and chondrodystrophic dogs. Based on previous reports and the findings of the microarray analyses, canonical Wnt signaling was further evaluated using qPCR of relevant Wnt target genes. We hypothesized that caveolin-1, a regulator of Wnt signaling that showed significant changes in gene expression in the microarray analyses, played a significant role in early IVD degeneration. Caveolin-1 expression was investigated in IVD tissue sections and in cultured NCs. To investigate the significance of Caveolin-1 in IVD health and degeneration, the NP of 3-month-old Caveolin-1 knock-out mice was histopathologically evaluated and compared with the NP of wild-type mice of the same age. RESULTS: Early IVD degeneration involved significant changes in numerous pathways, including Wnt/ß-catenin signaling. With regard to Wnt/ß-catenin signaling, axin2 gene expression was significantly higher in chondrodystrophic dogs compared with non-chondrodystrophic dogs. IVD degeneration involved significant down-regulation of axin2 gene expression. IVD degeneration involved significant down-regulation in Caveolin-1 gene and protein expression. NCs showed abundant caveolin-1 expression in vivo and in vitro, whereas CLCs did not. The NP of wild-type mice was rich in viable NCs, whereas the NP of Caveolin-1 knock-out mice contained chondroid-like matrix with mainly apoptotic, small, rounded cells. CONCLUSIONS: Early IVD degeneration involves down-regulation of canonical Wnt signaling and Caveolin-1 expression, which appears to be essential to the physiology and preservation of NCs. Therefore, Caveolin-1 may be regarded an exciting target for developing strategies for IVD regeneration.


Asunto(s)
Caveolina 1/biosíntesis , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Perros , Regulación hacia Abajo , Perfilación de la Expresión Génica , Regeneración Tisular Dirigida/métodos , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
PLoS One ; 7(11): e49442, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23185333

RESUMEN

BACKGROUND AND OBJECTIVES: This study was designed to identify and validate gene signatures that can predict disease free survival (DFS) in patients undergoing a radical resection for their colorectal liver metastases (CRLM). METHODS: Tumor gene expression profiles were collected from 119 patients undergoing surgery for their CRLM in the Paul Brousse Hospital (France) and the University Medical Center Utrecht (The Netherlands). Patients were divided into high and low risk groups. A randomly selected training set was used to find predictive gene signatures. The ability of these gene signatures to predict DFS was tested in an independent validation set comprising the remaining patients. Furthermore, 5 known clinical risk scores were tested in our complete patient cohort. RESULT: No gene signature was found that significantly predicted DFS in the validation set. In contrast, three out of five clinical risk scores were able to predict DFS in our patient cohort. CONCLUSIONS: No gene signature was found that could predict DFS in patients undergoing CRLM resection. Three out of five clinical risk scores were able to predict DFS in our patient cohort. These results emphasize the need for validating risk scores in independent patient groups and suggest improved designs for future studies.


Asunto(s)
Neoplasias Colorrectales/patología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/secundario , Anciano , Área Bajo la Curva , Estudios de Cohortes , Neoplasias Colorrectales/metabolismo , Supervivencia sin Enfermedad , Femenino , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Persona de Mediana Edad , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Modelos de Riesgos Proporcionales , Recurrencia , Riesgo , Resultado del Tratamiento
20.
PLoS Genet ; 8(9): e1002952, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23028359

RESUMEN

Histone H3 di- and trimethylation on lysine 4 are major chromatin marks that correlate with active transcription. The influence of these modifications on transcription itself is, however, poorly understood. We have investigated the roles of H3K4 methylation in Saccharomyces cerevisiae by determining genome-wide expression-profiles of mutants in the Set1 complex, COMPASS, that lays down these marks. Loss of H3K4 trimethylation has virtually no effect on steady-state or dynamically-changing mRNA levels. Combined loss of H3K4 tri- and dimethylation results in steady-state mRNA upregulation and delays in the repression kinetics of specific groups of genes. COMPASS-repressed genes have distinct H3K4 methylation patterns, with enrichment of H3K4me3 at the 3'-end, indicating that repression is coupled to 3'-end antisense transcription. Further analyses reveal that repression is mediated by H3K4me3-dependent 3'-end antisense transcription in two ways. For a small group of genes including PHO84, repression is mediated by a previously reported trans-effect that requires the antisense transcript itself. For the majority of COMPASS-repressed genes, however, it is the process of 3'-end antisense transcription itself that is the important factor for repression. Strand-specific qPCR analyses of various mutants indicate that this more prevalent mechanism of COMPASS-mediated repression requires H3K4me3-dependent 3'-end antisense transcription to lay down H3K4me2, which seems to serve as the actual repressive mark. Removal of the 3'-end antisense promoter also results in derepression of sense transcription and renders sense transcription insensitive to the additional loss of SET1. The derepression observed in COMPASS mutants is mimicked by reduction of global histone H3 and H4 levels, suggesting that the H3K4me2 repressive effect is linked to establishment of a repressive chromatin structure. These results indicate that in S. cerevisiae, the non-redundant role of H3K4 methylation by Set1 is repression, achieved through promotion of 3'-end antisense transcription to achieve specific rather than global effects through two distinct mechanisms.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Metilación , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Transcripción Genética , Cromatina/genética , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Histonas/metabolismo , Oligorribonucleótidos Antisentido/biosíntesis , Oligorribonucleótidos Antisentido/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...