Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nutrients ; 15(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37447330

RESUMEN

The nuclear liver X receptors (LXRα/ß) and peroxisome proliferator-activated receptors (PPARα/γ) are involved in the regulation of multiple biological processes, including lipid metabolism and inflammation. The activation of these receptors has been found to have neuroprotective effects, making them interesting therapeutic targets for neurodegenerative disorders such as Alzheimer's Disease (AD). The Asian brown seaweed Sargassum fusiforme contains both LXR-activating (oxy)phytosterols and PPAR-activating fatty acids. We have previously shown that dietary supplementation with lipid extracts of Sargassum fusiforme prevents disease progression in a mouse model of AD, without inducing adverse effects associated with synthetic pan-LXR agonists. We now determined the LXRα/ß- and PPARα/γ-activating capacity of lipid extracts of six European brown seaweed species (Alaria esculenta, Ascophyllum nodosum, Fucus vesiculosus, Himanthalia elongata, Saccharina latissima, and Sargassum muticum) and the Asian seaweed Sargassum fusiforme using a dual luciferase reporter assay. We analyzed the sterol and fatty acid profiles of the extracts by GC-MS and UPLC MS/MS, respectively, and determined their effects on the expression of LXR and PPAR target genes in several cell lines using quantitative PCR. All extracts were found to activate LXRs, with the Himanthalia elongata extract showing the most pronounced efficacy, comparable to Sargassum fusiforme, for LXR activation and transcriptional regulation of LXR-target genes. Extracts of Alaria esculenta, Fucus vesiculosus, and Saccharina latissima showed the highest capacity to activate PPARα, while extracts of Alaria esculenta, Ascophyllum nodosum, Fucus vesiculosus, and Sargassum muticum showed the highest capacity to activate PPARγ, comparable to Sargassum fusiforme extract. In CCF-STTG1 astrocytoma cells, all extracts induced expression of cholesterol efflux genes (ABCG1, ABCA1, and APOE) and suppressed expression of cholesterol and fatty acid synthesis genes (DHCR7, DHCR24, HMGCR and SREBF2, and SREBF1, ACACA, SCD1 and FASN, respectively). Our data show that lipophilic fractions of European brown seaweeds activate LXRs and PPARs and thereby modulate lipid metabolism. These results support the potential of brown seaweeds in the prevention and/or treatment of neurodegenerative diseases and possibly cardiometabolic and inflammatory diseases via concurrent activation of LXRs and PPARs.


Asunto(s)
Enfermedad de Alzheimer , Algas Marinas , Ratones , Animales , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , PPAR alfa/genética , Espectrometría de Masas en Tándem , Receptores Citoplasmáticos y Nucleares/genética , Colesterol/metabolismo , Ácidos Grasos/metabolismo
2.
Cancers (Basel) ; 14(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35626030

RESUMEN

Cancer-related fatigue (CRF) is the most devastating long-term side effect of many cancer survivors that confounds the quality of life for months to years after treatment. However, the cause of CRF is poorly understood. As a result, cancer survivors, at best, receive psychological support. Chemotherapy has been shown to increase the risk of CRF. Here, we study therapy-induced fatigue in a non-tumor-bearing mouse model with three different topoisomerase II-poisoning cancer drugs. These drugs either induce DNA damage and/or chromatin damage. Shortly before and several weeks after treatment, running wheel activity and electroencephalographic sleep were recorded. We show that doxorubicin, combining DNA damage with chromatin damage, unlike aclarubicin or etoposide, induces sustained CRF in this model. Surprisingly, this was not related to changes in sleep. In contrast, our data indicate that the therapy-induced CRF is associated with a disrupted circadian clock. The data suggest that CRF is probably a circadian clock disorder that influences the quality of waking and that the development of CRF depends on the type of chemotherapy provided. These findings could have implications for selecting and improving chemotherapy for the treatment of cancer in order to prevent the development of CRF.

3.
J Alzheimers Dis ; 87(1): 51-81, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35275527

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia and typically characterized by the accumulation of amyloid-ß plaques and tau tangles. Intriguingly, there also exists a group of elderly which do not develop dementia during their life, despite the AD neuropathology, the so-called non-demented individuals with AD neuropathology (NDAN). In this review, we provide extensive background on AD pathology and normal aging and discuss potential mechanisms that enable these NDAN individuals to remain cognitively intact. Studies presented in this review show that NDAN subjects are generally higher educated and have a larger cognitive reserve. Furthermore, enhanced neural hypertrophy could compensate for hippocampal and cingulate neural atrophy in NDAN individuals. On a cellular level, these individuals show increased levels of neural stem cells and 'von Economo neurons'. Furthermore, in NDAN brains, binding of Aß oligomers to synapses is prevented, resulting in decreased glial activation and reduced neuroinflammation. Overall, the evidence stated here strengthens the idea that some individuals are more resistant to AD pathology, or at least show an elongation of the asymptomatic state of the disease compared to others. Insights into the mechanisms underlying this resistance could provide new insight in understanding normal aging and AD itself. Further research should focus on factors and mechanisms that govern the NDAN cognitive resilience in order to find clues on novel biomarkers, targets, and better treatments of AD.


Asunto(s)
Enfermedad de Alzheimer , Anciano , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Hipocampo/patología , Humanos , Placa Amiloide/patología , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...