RESUMEN
Airway epithelial cells represent the first line of defense against respiratory pathogens. Flagellin drives the motility of many mucosal pathogens and has been suggested as an immune enhancing adjunctive therapeutic in infections of the airways. This study leveraged single-cell RNA sequencing to determine cell-specific effects of flagellin in primary human bronchial epithelial cells growing in air-liquid interface. Seven cell clusters were identified, including ciliated cells, ionocytes, and several states of basal and secretory cells, of which only inflammatory basal cells and inflammatory secretory cells demonstrated a proportional increase in response to flagellin. Inflammatory secretory cells showed evidence of metabolic reprogramming toward aerobic glycolysis, while in inflammatory basal cells transcriptome profiles indicated enhanced oxidative phosphorylation. Inhibition of mTOR prevented the shift to glycolysis and reduced inflammatory gene transcription specifically in inflammatory secretory cells. These data demonstrate the functional heterogeneity of the human airway epithelium upon exposure to flagellin.
RESUMEN
Objective: Antimicrobial resistance is an emerging problem and multi-drug resistant (MDR) Klebsiella pneumoniae (K. pneumoniae) represents an enormous risk of failing therapy in hospital-acquired pneumonia. The current study aimed to determine the immunomodulatory effect of topical flagellin in addition to antibiotic treatment during respiratory infection evoked by hypervirulent antibiotic-susceptible and antibiotic-resistant K. pneumoniae in mice. Methods: C57BL6 mice were inoculated intranasally with hypervirulent K. pneumoniae (K2:O1) which was either antibiotic-susceptible or multi-drug resistant. Six hours after infection, mice were treated with antibiotics intraperitoneally and flagellin or vehicle intranasally. Mice were sacrificed 24 hours after infection. Samples were analyzed for bacterial loads and for inflammatory and coagulation markers. Results: Flagellin therapy induced neutrophil influx in the lung during antibiotic-treated pneumonia evoked by either antibiotic-susceptible or -resistant K. pneumoniae. The pulmonary neutrophil response was matched by elevated levels of neutrophil-attracting chemokines, neutrophil degranulation products, and local coagulation activation. The combined therapy of effective antibiotics and flagellin did not impact K. pneumoniae outgrowth in the lung, but decreased bacterial counts in distant organs. Neutrophil depletion abrogated the flagellin-mediated effect on bacterial dissemination and local coagulation responses. Conclusion: Topical flagellin administration as an adjunctive to antibiotic treatment augments neutrophil responses during pneumonia evoked by MDR-K. pneumoniae, thereby reducing bacterial dissemination to distant organs.
Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Flagelina , Infecciones por Klebsiella , Klebsiella pneumoniae , Ratones Endogámicos C57BL , Neutrófilos , Animales , Flagelina/inmunología , Flagelina/administración & dosificación , Neutrófilos/inmunología , Neutrófilos/efectos de los fármacos , Infecciones por Klebsiella/inmunología , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Ratones , Pulmón/inmunología , Pulmón/microbiología , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Administración Tópica , Modelos Animales de Enfermedad , Infiltración Neutrófila/efectos de los fármacos , Carga Bacteriana/efectos de los fármacosRESUMEN
Rationale: Lymphopenia in coronavirus disease (COVID-19) is associated with increased mortality. Objectives: To explore the association between lymphopenia, host response aberrations, and mortality in patients with lymphopenic COVID-19. Methods: We determined 43 plasma biomarkers reflective of four pathophysiological domains: endothelial cell and coagulation activation, inflammation and organ damage, cytokine release, and chemokine release. We explored if decreased concentrations of lymphocyte-derived proteins in patients with lymphopenia were associated with an increase in mortality. We sought to identify host response phenotypes in patients with lymphopenia by cluster analysis of plasma biomarkers. Measurements and Main Results: A total of 439 general ward patients with COVID-19 were stratified by baseline lymphocyte counts: normal (>1.0 × 109/L; n = 167), mild lymphopenia (>0.5 to ⩽1.0 × 109/L; n = 194), and severe lymphopenia (⩽0.5 × 109/L; n = 78). Lymphopenia was associated with alterations in each host response domain. Lymphopenia was associated with increased mortality. Moreover, in patients with lymphopenia (n = 272), decreased concentrations of several lymphocyte-derived proteins (e.g., CCL5, IL-4, IL-13, IL-17A) were associated with an increase in mortality (at P < 0.01 or stronger significance levels). A cluster analysis revealed three host response phenotypes in patients with lymphopenia: "hyporesponsive" (23.2%), "hypercytokinemic" (36.4%), and "inflammatory-injurious" (40.4%), with substantially differing mortality rates of 9.5%, 5.1%, and 26.4%, respectively. A 10-biomarker model accurately predicted these host response phenotypes in an external cohort with similar mortality distribution. The inflammatory-injurious phenotype showed a remarkable combination of relatively high inflammation and organ damage markers with high antiinflammatory cytokine levels yet low proinflammatory cytokine levels. Conclusions: Lymphopenia in COVID-19 signifies a heterogenous group of patients with distinct host response features. Specific host responses contribute to lymphopenia-associated mortality in COVID-19, including reduced CCL5 levels.
Asunto(s)
Anemia , COVID-19 , Linfopenia , Humanos , COVID-19/complicaciones , SARS-CoV-2 , Linfopenia/complicaciones , Citocinas , Inflamación/complicaciones , Biomarcadores , Anemia/complicacionesRESUMEN
BACKGROUND: Thrombocytopenia is associated with increased mortality in COVID-19 patients. OBJECTIVE: To determine the association between thrombocytopenia and alterations in host response pathways implicated in disease pathogenesis in patients with severe COVID-19. PATIENTS/METHODS: We studied COVID-19 patients admitted to a general hospital ward included in a national (CovidPredict) cohort derived from 13 hospitals in the Netherlands. In a subgroup, 43 host response biomarkers providing insight in aberrations in distinct pathophysiological domains (coagulation and endothelial cell function; inflammation and damage; cytokines and chemokines) were determined in plasma obtained at a single time point within 48 h after admission. Patients were stratified in those with normal platelet counts (150-400 × 109/L) and those with thrombocytopenia (<150 × 109/L). RESULTS: 6.864 patients were enrolled in the national cohort, of whom 1.348 had thrombocytopenia and 5.516 had normal platelets counts; the biomarker cohort consisted of 429 patients, of whom 85 with thrombocytopenia and 344 with normal platelet counts. Plasma D-dimer levels were not different in thrombocytopenia, although patients with moderate-severe thrombocytopenia (<100 × 109/L) showed higher D-dimer levels, indicating enhanced coagulation activation. Patients with thrombocytopenia had lower plasma levels of many proinflammatory cytokines and chemokines, and antiviral mediators, suggesting involvement of platelets in inflammation and antiviral immunity. Thrombocytopenia was associated with alterations in endothelial cell biomarkers indicative of enhanced activation and a relatively preserved glycocalyx integrity. CONCLUSION: Thrombocytopenia in hospitalized patients with severe COVID-19 is associated with broad host response changes across several pathophysiological domains. These results suggest a role of platelets in the immune response during severe COVID-19.
Asunto(s)
Anemia , COVID-19 , Trombocitopenia , Humanos , COVID-19/complicaciones , Anemia/complicaciones , Biomarcadores , Inflamación/complicaciones , CitocinasRESUMEN
BACKGROUND: Coronavirus disease 2019 (COVID-19)-induced mortality occurs predominantly in older patients. Several immunomodulating therapies seem less beneficial in these patients. The biological substrate behind these observations is unknown. The aim of this study was to obtain insight into the association between ageing, the host response and mortality in patients with COVID-19. METHODS: We determined 43 biomarkers reflective of alterations in four pathophysiological domains: endothelial cell and coagulation activation, inflammation and organ damage, and cytokine and chemokine release. We used mediation analysis to associate ageing-driven alterations in the host response with 30-day mortality. Biomarkers associated with both ageing and mortality were validated in an intensive care unit and external cohort. RESULTS: 464 general ward patients with COVID-19 were stratified according to age decades. Increasing age was an independent risk factor for 30-day mortality. Ageing was associated with alterations in each of the host response domains, characterised by greater activation of the endothelium and coagulation system and stronger elevation of inflammation and organ damage markers, which was independent of an increase in age-related comorbidities. Soluble tumour necrosis factor receptor 1, soluble triggering receptor expressed on myeloid cells 1 and soluble thrombomodulin showed the strongest correlation with ageing and explained part of the ageing-driven increase in 30-day mortality (proportion mediated: 13.0%, 12.9% and 12.6%, respectively). CONCLUSIONS: Ageing is associated with a strong and broad modification of the host response to COVID-19, and specific immune changes likely contribute to increased mortality in older patients. These results may provide insight into potential age-specific immunomodulatory targets in COVID-19.
Asunto(s)
COVID-19 , Humanos , Anciano , Biomarcadores , Inflamación , Citocinas , EnvejecimientoRESUMEN
Pneumonia caused by multi-drug-resistant Klebsiella pneumoniae (MDR-Kpneu) poses a major public health threat, especially to immunocompromised or hospitalized patients. This study aimed to determine the immunostimulatory effect of the Toll-like receptor 5 ligand flagellin on primary human lung epithelial cells during infection with MDR-Kpneu. Human bronchial epithelial (HBE) cells, grown on an air-liquid interface, were inoculated with MDR-Kpneu on the apical side and treated during ongoing infection with antibiotics (meropenem) and/or flagellin on the basolateral and apical side, respectively; the antimicrobial and inflammatory effects of flagellin were determined in the presence or absence of meropenem. In the absence of meropenem, flagellin treatment of MDR-Kpneu-infected HBE cells increased the expression of antibacterial defense genes and the secretion of chemokines; moreover, supernatants of flagellin-exposed HBE cells activated blood neutrophils and monocytes. However, in the presence of meropenem, flagellin did not augment these responses compared to meropenem alone. Flagellin did not impact the outgrowth of MDR-Kpneu. Flagellin enhances antimicrobial gene expression and chemokine release by the MDR-Kpneu-infected primary human bronchial epithelium, which is associated with the release of mediators that activate neutrophils and monocytes. Topical flagellin therapy may have potential to boost immune responses in the lung during pneumonia.
Asunto(s)
Klebsiella , Neumonía , Humanos , Flagelina/farmacología , Meropenem/farmacología , Células Epiteliales , Antibacterianos/farmacologíaRESUMEN
Antibiotic resistance is a major problem, with methicillin-resistant Staphylococcus aureus (MRSA) being a prototypical example in surgical and community-acquired infections. S. aureus, like many pathogens, is immune evasive and able to multiply within host immune cells. Consequently, compounds that aid host immunity (e.g., by stimulating the host-mediated killing of pathogens) are appealing alternatives or adjuncts to classical antibiotics. Azithromycin is both an antibacterial and an immunomodulatory drug that accumulates in immune cells. We set out to improve the immunomodulatory properties of azithromycin by coupling the immune activators, nitric oxide and acetate, to its core structure. This new compound, designated CSY5669, enhanced the intracellular killing of MRSA by 45% ± 20% in monocyte-derived macrophages and by 55% ± 15% in peripheral blood leukocytes, compared with untreated controls. CSY5669-treated peripheral blood leukocytes produced fewer proinflammatory cytokines, while in both monocyte-derived macrophages and peripheral blood leukocytes, phagocytosis, ROS production, and degranulation were unaffected. In mice with MRSA pneumonia, CSY5669 treatment reduced inflammation, lung pathology and vascular leakage with doses as low as 0.01 µmol/kg p.o. CSY5669 had diminished direct in vitro antibacterial properties compared with azithromycin. Also, CSY5669 was immunomodulatory at concentrations well below 1% of the minimum inhibitory concentration, which would minimize selection for macrolide-resistant bacteria if it were to be used as a host-directed therapy. This study highlights the potential of CSY5669 as a possible adjunctive therapy in pneumonia caused by MRSA, as CSY5669 could enhance bacterial eradication while simultaneously limiting inflammation-associated pathology.
Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Neumonía Estafilocócica , Profármacos , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Azitromicina/farmacología , Azitromicina/uso terapéutico , Citocinas , Inflamación/tratamiento farmacológico , Ratones , Pruebas de Sensibilidad Microbiana , Óxido Nítrico , Neumonía Estafilocócica/tratamiento farmacológico , Profármacos/uso terapéutico , Especies Reactivas de Oxígeno , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureusRESUMEN
Most macrophages generate energy to mount an inflammatory cytokine response by increased glucose metabolism through intracellular glycolysis. Previous studies have suggested that alveolar macrophages (AMs), which reside in a glucose-poor natural environment, are less capable to utilize glycolysis and instead rely on other substrates to fuel oxidative phosphorylation (OXPHOS) for energy supply. At present, it is not known whether AMs are capable to use glucose metabolism to produce cytokines when other metabolic options are blocked. Here, we studied human AMs retrieved by bronchoalveolar lavage from healthy subjects, and examined their glucose metabolism in response to activation by the gram-negative bacterial component lipopolysaccharide (LPS) ex vivo. The immunological and metabolic responses of AMs were compared to those of cultured blood monocyte-derived macrophages (MDMs) from the same subjects. LPS stimulation enhanced cytokine release by both AMs and MDMs, which was associated with increased lactate release by MDMs (reflecting glycolysis), but not by AMs. In agreement, LPS induced higher mRNA expression of multiple glycolytic regulators in MDMs, but not in AMs. Flux analyses of [13C]-glucose revealed no differences in [13C]-incorporation in glucose metabolism intermediates in AMs. Inhibition of OXPHOS by oligomycin strongly reduced LPS-induced cytokine production by AMs, but not by MDMs. Collectively, these results indicate that human AMs, in contrast to MDMs, do not use glucose metabolism during LPS-induced activation and fully rely on OXPHOS for cytokine production.
Asunto(s)
Lipopolisacáridos , Macrófagos Alveolares , Citocinas/metabolismo , Glucosa/metabolismo , Humanos , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/metabolismoRESUMEN
Dexamethasone improves clinical outcomes in COVID-19 patients requiring supplementary oxygen. We investigated possible mechanisms of action by comparing sixteen plasma host response biomarkers in general ward patients before and after implementation of dexamethasone as standard of care. 48 patients without and 126 patients with dexamethasone treatment were sampled within 48 h of admission. Endothelial cell and coagulation activation biomarkers were comparable. Dexamethasone treatment was associated with lower plasma interleukin (IL)-6 and IL-1 receptor antagonist levels, whilst other inflammation parameters were not affected. These data argue against modification of vascular-procoagulant responses as an early mechanism of action of dexamethasone in COVID-19.