Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 950: 175254, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111441

RESUMEN

Small uninhabited islands form important roosting and breeding habitats for many coastal birds. Previous studies have demonstrated that guano can promote ecosystem productivity and functionality on island ecosystems. Here, we assess the role of external nutrient input by coastal birds on the vegetation structure and coverage on sandy biogeomorphic islands, where island-forming processes depend on vegetation-sedimentation feedbacks. As a first step, we investigated whether breeding birds affect vegetation productivity on sandy back-barrier islands in the Wadden Sea. Using a combination of bird observations and plant stable isotope (δ15N) analyses, we demonstrate that (i) breeding birds transport large quantities of nutrients via their faecal outputs to these islands annually and that (ii) this external nitrogen source influences vegetation development on these sandy, nutrient-limited, islands. Based on these results we discuss how this avian nutrient pump could impact island development and habitat suitability for coastal birds and discuss future directions for research. In general, we conclude that avian subsidies have the potential to affect both the ecological and biogeomorphic functioning of coastal soft-sediment systems. However, the strength and scale of especially these biogeomorphic interactions are not fully understood. For the conservation of both threatened coastal birds and sandy back-barrier islands and the design of appropriate management strategies, we argue that three-way interactions between birds, vegetation and sandy island morphodynamics need to be further elucidated.

2.
Nat Commun ; 13(1): 2017, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440560

RESUMEN

Coastal wetlands fulfil important functions for biodiversity conservation and coastal protection, which are inextricably linked to typical morphological features like tidal channels. Channel network configurations in turn are shaped by bio-geomorphological feedbacks between vegetation, hydrodynamics and sediment transport. This study investigates the impact of two starkly different recruitment strategies between mangroves (fast/homogenous) and salt marshes (slow/patchy) on channel network properties. We first compare channel networks found in salt marshes and mangroves around the world and then demonstrate how observed channel patterns can be explained by vegetation establishment strategies using controlled experimental conditions. We find that salt marshes are dissected by more extensive channel networks and have shorter over-marsh flow paths than mangrove systems, while their branching patterns remain similar. This finding is supported by our laboratory experiments, which reveal that different recruitment strategies of mangroves and salt marshes hamper or facilitate channel development, respectively. Insights of our study are crucial to understand wetland resilience with rising sea-levels especially under climate-driven ecotone shifts.


Asunto(s)
Cambio Climático , Humedales , Ecosistema , Elevación del Nivel del Mar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...