Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Biol Chem ; 295(21): 7301-7316, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32284329

RESUMEN

Heat shock protein 70 (HSP70) chaperones play a central role in protein quality control and are crucial for many cellular processes, including protein folding, degradation, and disaggregation. Human HSP70s compose a family of 13 members that carry out their functions with the aid of even larger families of co-chaperones. A delicate interplay between HSP70s and co-chaperone recruitment is thought to determine substrate fate, yet it has been generally assumed that all Hsp70 paralogs have similar activities and are largely functionally redundant. However, here we found that when expressed in human cells, two highly homologous HSP70s, HSPA1A and HSPA1L, have opposing effects on cellular handling of various substrates. For example, HSPA1A reduced aggregation of the amyotrophic lateral sclerosis-associated protein variant superoxide dismutase 1 (SOD1)-A4V, whereas HSPA1L enhanced its aggregation. Intriguingly, variations in the substrate-binding domain of these HSP70s did not play a role in this difference. Instead, we observed that substrate fate is determined by differential interactions of the HSP70s with co-chaperones. Whereas most co-chaperones bound equally well to these two HSP70s, Hsp70/Hsp90-organizing protein (HOP) preferentially bound to HSPA1L, and the Hsp110 nucleotide-exchange factor HSPH2 preferred HSPA1A. The role of HSPH2 was especially crucial for the HSPA1A-mediated reduction in SOD1-A4V aggregation. These findings reveal a remarkable functional diversity at the level of the cellular HSP70s and indicate that this diversity is defined by their affinities for specific co-chaperones such as HSPH2.


Asunto(s)
Proteínas del Choque Térmico HSP110/química , Proteínas HSP70 de Choque Térmico/química , Proteínas de Homeodominio/química , Agregación Patológica de Proteínas , Superóxido Dismutasa-1/química , Proteínas Supresoras de Tumor/química , Sustitución de Aminoácidos , Línea Celular Tumoral , Células HEK293 , Proteínas del Choque Térmico HSP110/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas de Homeodominio/genética , Humanos , Mutación Missense , Superóxido Dismutasa-1/genética , Proteínas Supresoras de Tumor/genética
2.
Nat Commun ; 9(1): 5342, 2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30559338

RESUMEN

BAG3 is a multi-domain hub that connects two classes of chaperones, small heat shock proteins (sHSPs) via two isoleucine-proline-valine (IPV) motifs and Hsp70 via a BAG domain. Mutations in either the IPV or BAG domain of BAG3 cause a dominant form of myopathy, characterized by protein aggregation in both skeletal and cardiac muscle tissues. Surprisingly, for both disease mutants, impaired chaperone binding is not sufficient to explain disease phenotypes. Recombinant mutants are correctly folded, show unaffected Hsp70 binding but are impaired in stimulating Hsp70-dependent client processing. As a consequence, the mutant BAG3 proteins become the node for a dominant gain of function causing aggregation of itself, Hsp70, Hsp70 clients and tiered interactors within the BAG3 interactome. Importantly, genetic and pharmaceutical interference with Hsp70 binding completely reverses stress-induced protein aggregation for both BAG3 mutations. Thus, the gain of function effects of BAG3 mutants act as Achilles heel of the HSP70 machinery.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares/genética , Miocardio/patología , Agregación Patológica de Proteínas/genética , Línea Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Contracción Muscular/genética , Contracción Muscular/fisiología , Enfermedades Musculares/patología , Agregación Patológica de Proteínas/patología , Unión Proteica/genética
3.
Mol Cell ; 62(2): 272-283, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27151442

RESUMEN

Expanded CAG repeats lead to debilitating neurodegenerative disorders characterized by aggregation of proteins with expanded polyglutamine (polyQ) tracts. The mechanism of aggregation involves primary and secondary nucleation steps. We show how a noncanonical member of the DNAJ-chaperone family, DNAJB6, inhibits the conversion of soluble polyQ peptides into amyloid fibrils, in particular by suppressing primary nucleation. This inhibition is mediated by a serine/threonine-rich region that provides an array of surface-exposed hydroxyl groups that bind to polyQ peptides and may disrupt the formation of the H bonds essential for the stability of amyloid fibrils. Early prevention of polyQ aggregation by DNAJB6 occurs also in cells and leads to delayed neurite retraction even before aggregates are visible. In a mouse model, brain-specific coexpression of DNAJB6 delays polyQ aggregation, relieves symptoms, and prolongs lifespan, pointing to DNAJB6 as a potential target for disease therapy and tool for unraveling early events in the onset of polyQ diseases.

4.
Biochem J ; 435(1): 127-42, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21231916

RESUMEN

Humans contain many HSP (heat-shock protein) 70/HSPA- and HSP40/DNAJ-encoding genes and most of the corresponding proteins are localized in the cytosol. To test for possible functional differences and/or substrate specificity, we assessed the effect of overexpression of each of these HSPs on refolding of heat-denatured luciferase and on the suppression of aggregation of a non-foldable polyQ (polyglutamine)-expanded Huntingtin fragment. Overexpressed chaperones that suppressed polyQ aggregation were found not to be able to stimulate luciferase refolding. Inversely, chaperones that supported luciferase refolding were poor suppressors of polyQ aggregation. This was not related to client specificity itself, as the polyQ aggregation inhibitors often also suppressed heat-induced aggregation of luciferase. Surprisingly, the exclusively heat-inducible HSPA6 lacks both luciferase refolding and polyQ aggregation-suppressing activities. Furthermore, whereas overexpression of HSPA1A protected cells from heat-induced cell death, overexpression of HSPA6 did not. Inversely, siRNA (small interfering RNA)-mediated blocking of HSPA6 did not impair the development of heat-induced thermotolerance. Yet, HSPA6 has a functional substrate-binding domain and possesses intrinsic ATPase activity that is as high as that of the canonical HSPA1A when stimulated by J-proteins. In vitro data suggest that this may be relevant to substrate specificity, as purified HSPA6 could not chaperone heat-unfolded luciferase but was able to assist in reactivation of heat-unfolded p53. So, even within the highly sequence-conserved HSPA family, functional differentiation is larger than expected, with HSPA6 being an extreme example that may have evolved to maintain specific critical functions under conditions of severe stress.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Replegamiento Proteico , Animales , Línea Celular , Citrato (si)-Sintasa/química , Citrato (si)-Sintasa/metabolismo , Cricetinae , Perfilación de la Expresión Génica , Silenciador del Gen , Proteínas del Choque Térmico HSP40/biosíntesis , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/biosíntesis , Proteínas HSP70 de Choque Térmico/genética , Calor/efectos adversos , Humanos , Luciferasas de Luciérnaga/química , Luciferasas de Luciérnaga/metabolismo , Chaperonas Moleculares/biosíntesis , Chaperonas Moleculares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Péptidos/química , Péptidos/metabolismo , ARN Interferente Pequeño , Proteínas Recombinantes de Fusión/metabolismo , Proteína p53 Supresora de Tumor/biosíntesis , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
5.
Mol Cell ; 37(3): 355-69, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20159555

RESUMEN

Misfolding and aggregation are associated with cytotoxicity in several protein folding diseases. A large network of molecular chaperones ensures protein quality control. Here, we show that within the Hsp70, Hsp110, and Hsp40 (DNAJ) chaperone families, members of a subclass of the DNAJB family (particularly DNAJB6b and DNAJB8) are superior suppressors of aggregation and toxicity of disease-associated polyglutamine proteins. The antiaggregation activity is largely independent of the N-terminal Hsp70-interacting J-domain. Rather, a C-terminal serine-rich (SSF-SST) region and the C-terminal tail are essential. The SSF-SST region is involved in substrate binding, formation of polydisperse oligomeric complexes, and interaction with histone deacetylases (HDAC4, HDAC6, SIRT2). Inhibiting HDAC4 reduced DNAJB8 function. DNAJB8 is (de)acetylated at two conserved C-terminal lysines that are not involved in substrate binding, but do play a role in suppressing protein aggregation. Combined, our data provide a functional link between HDACs and DNAJs in suppressing cytotoxic protein aggregation.


Asunto(s)
Proteínas del Choque Térmico HSP40/fisiología , Histona Desacetilasas/fisiología , Animales , Línea Celular , Proteínas del Choque Térmico HSP40/química , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/fisiología , Respuesta al Choque Térmico , Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Humanos , Péptidos/metabolismo , Deficiencias en la Proteostasis/metabolismo , Xenopus laevis
6.
J Biol Chem ; 282(47): 34334-45, 2007 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-17875648

RESUMEN

Molecular chaperones are essential for cells to prevent that partially unfolded proteins form non-functional, toxic aggregates. This requirement is increased when cells experience protein unfolding stresses and such could affect all compartments in the eukaryotic cell. Whether all organelles are equipped with comparable chaperone capacities is largely unknown, mainly due to the lack of suitable reporters that allow such a comparison. Here we describe the development of fluorescent luciferase reporters that are sorted to various cellular locations (nucleus, cytoplasm, endoplasmic reticulum, and peroxisomes) and that differ minimally in their intrinsic thermal stability properties. When heating living cells, the rate of inactivation was most rapid for the nuclear-targeted luciferase, indicating that the nucleus is the most sensitive organelle toward heat-induced denaturing stress. Post-heat re-activation, however, occurred at equal kinetics irrespective of luciferase localization. Also, induction of thermotolerance by a priming heat treatment, that coordinately up-regulates all heat-inducible chaperones, resulted in a transient heat resistance of the luciferase in all organelles in a comparable manner. Overexpression of the main heat-inducible Hsp70 family member, HspA1A, protected only the cytosolic and nuclear, but not the other luciferases. Together, our data suggest that in each compartment investigated, including the peroxisome in which so far no chaperones could be detected, chaperone machines are present and can be induced with activities similar to those present in the cytosolic/nuclear compartment.


Asunto(s)
Proteínas HSP70 de Choque Térmico/biosíntesis , Respuesta al Choque Térmico/fisiología , Orgánulos/metabolismo , Pliegue de Proteína , Línea Celular , Expresión Génica , Proteínas HSP70 de Choque Térmico/genética , Calor , Humanos , Cinética
7.
PLoS Biol ; 4(12): e417, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17147470

RESUMEN

Disease-associated misfolded proteins or proteins damaged due to cellular stress are generally disposed via the cellular protein quality-control system. However, under saturating conditions, misfolded proteins will aggregate. In higher eukaryotes, these aggregates can be transported to accumulate in aggresomes at the microtubule organizing center. The fate of cells that contain aggresomes is currently unknown. Here we report that cells that have formed aggresomes can undergo normal mitosis. As a result, the aggregated proteins are asymmetrically distributed to one of the daughter cells, leaving the other daughter free of accumulated protein damage. Using both epithelial crypts of the small intestine of patients with a protein folding disease and Drosophila melanogaster neural precursor cells as models, we found that the inheritance of protein aggregates during mitosis occurs with a fixed polarity indicative of a mechanism to preserve the long-lived progeny.


Asunto(s)
Polaridad Celular , Células Eucariotas/citología , Células Eucariotas/metabolismo , Proteínas/metabolismo , Animales , Células Cultivadas , Cricetinae , Drosophila melanogaster , Humanos , Mitosis , Ácido Poliglutámico/metabolismo
8.
Oncogene ; 24(51): 7619-23, 2005 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-16205648

RESUMEN

A remarkable and yet unexplained phenomenon in cancer cells is the presence of multiple centrosomes, organelles required for normal cell division. Previously, it was demonstrated that the tumor suppressor BRCA1 is a component of centrosomes. This observation led to the hypothesis that defective BRCA1 results in malfunctioning centrosomes and faulty centrosomes are a possible cause of cancer. Using EGFP-tagged fusion proteins and BRCA1(-/-) cells we show that although some BRCA1 antibodies do label centrosomes under certain fixation conditions, BRCA1 is not a centrosomal protein. Therefore, it is unlikely that a mutation in BRCA1 directly alters centrosome structure and function. BRCA1 plays an established role in DNA damage repair and in G2/M checkpoint regulation. We present evidence that multiple centrosomes can arise in any cell when G2/M checkpoint fails and entrance into mitosis occurs in the presence of DNA damage.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA1/fisiología , Ciclo Celular/fisiología , Centrosoma/fisiología , Anticuerpos , Daño del ADN , Reparación del ADN , Humanos , Mitosis , Mutación , Neoplasias/genética , Neoplasias/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA