Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Nanotechnol ; 19(5): 652-659, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38351230

RESUMEN

Proteins are the primary functional actors of the cell. While proteoform diversity is known to be highly biologically relevant, current protein analysis methods are of limited use for distinguishing proteoforms. Mass spectrometric methods, in particular, often provide only ambiguous information on post-translational modification sites, and sequences of co-existing modifications may not be resolved. Here we demonstrate fluorescence resonance energy transfer (FRET)-based single-molecule protein fingerprinting to map the location of individual amino acids and post-translational modifications within single full-length protein molecules. Our data show that both intrinsically disordered proteins and folded globular proteins can be fingerprinted with a subnanometer resolution, achieved by probing the amino acids one by one using single-molecule FRET via DNA exchange. This capability was demonstrated through the analysis of alpha-synuclein, an intrinsically disordered protein, by accurately quantifying isoforms in mixtures using a machine learning classifier, and by determining the locations of two O-GlcNAc moieties. Furthermore, we demonstrate fingerprinting of the globular proteins Bcl-2-like protein 1, procalcitonin and S100A9. We anticipate that our ability to perform proteoform identification with the ultimate sensitivity may unlock exciting new venues in proteomics research and biomarker-based diagnosis.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Intrínsecamente Desordenadas/química , Imagen Individual de Molécula/métodos , Aprendizaje Automático , Mapeo Peptídico/métodos
2.
iScience ; 27(2): 108785, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38303728

RESUMEN

Membrane proteins perform numerous critical functions in the cell, making many of them primary drug targets. However, their preference for a lipid environment makes them challenging to study using established solution-based methods. Here, we show that peptidiscs, a recently developed membrane mimetic, provide an ideal platform to study membrane proteins and their interactions with mass photometry (MP) in detergent-free conditions. The mass resolution for membrane protein complexes is similar to that achievable with soluble proteins owing to the low carrier heterogeneity. Using the ABC transporter BtuCD, we show that MP can quantify interactions between peptidisc-reconstituted membrane protein receptors and their soluble protein binding partners. Using the BAM complex, we further show that MP reveals interactions between a membrane protein receptor and a bactericidal antibody. Our results highlight the utility of peptidiscs for membrane protein characterization in detergent-free solution and provide a rapid and powerful platform for quantifying membrane protein interactions.

3.
Front Microbiol ; 14: 1107093, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937278

RESUMEN

The bacterial chromosome is spatially organized through protein-mediated compaction, supercoiling, and cell-boundary confinement. Structural Maintenance of Chromosomes (SMC) complexes are a major class of chromosome-organizing proteins present throughout all domains of life. Here, we study the role of the Escherichia coli SMC complex MukBEF in chromosome architecture and segregation. Using quantitative live-cell imaging of shape-manipulated cells, we show that MukBEF is crucial to preserve the toroidal topology of the Escherichia coli chromosome and that it is non-uniformly distributed along the chromosome: it prefers locations toward the origin and away from the terminus of replication, and it is unevenly distributed over the origin of replication along the two chromosome arms. Using an ATP hydrolysis-deficient MukB mutant, we confirm that MukBEF translocation along the chromosome is ATP-dependent, in contrast to its loading onto DNA. MukBEF and MatP are furthermore found to be essential for sister chromosome decatenation. We propose a model that explains how MukBEF, MatP, and their interacting partners organize the chromosome and contribute to sister segregation. The combination of bacterial cell-shape modification and quantitative fluorescence microscopy paves way to investigating chromosome-organization factors in vivo.

4.
iScience ; 24(11): 103239, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34729466

RESUMEN

Single-molecule protein identification is an unrealized concept with potentially ground-breaking applications in biological research. We propose a method called FRET X (Förster Resonance Energy Transfer via DNA eXchange) fingerprinting, in which the FRET efficiency is read out between exchangeable dyes on protein-bound DNA docking strands and accumulated FRET efficiencies constitute the fingerprint for a protein. To evaluate the feasibility of this approach, we simulated fingerprints for hundreds of proteins using a coarse-grained lattice model and experimentally demonstrated FRET X fingerprinting on model peptides. Measured fingerprints are in agreement with our simulations, corroborating the validity of our modeling approach. In a simulated complex mixture of >300 human proteins of which only cysteines, lysines, and arginines were labeled, a support vector machine was able to identify constituents with 95% accuracy. We anticipate that our FRET X fingerprinting approach will form the basis of an analysis tool for targeted proteomics.

5.
Trends Biochem Sci ; 46(11): 918-930, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34247944

RESUMEN

Single-molecule localization microscopy (SMLM) is a potent tool to examine biological systems with unprecedented resolution, enabling the investigation of increasingly smaller structures. At the forefront of these developments is DNA-based point accumulation for imaging in nanoscale topography (DNA-PAINT), which exploits the stochastic and transient binding of fluorescently labeled DNA probes. In its early stages the implementation of DNA-PAINT was burdened by low-throughput, excessive acquisition time, and difficult integration with live-cell imaging. However, recent advances are addressing these challenges and expanding the range of applications of DNA-PAINT. We review the current state of the art of DNA-PAINT in light of these advances and contemplate what further developments remain indispensable to realize live-cell imaging.


Asunto(s)
ADN , Imagen Individual de Molécula , ADN/química , Microscopía Fluorescente/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...