Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Circ Res ; 130(2): 166-180, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34886679

RESUMEN

RATIONALE: Dextro-transposition of the great arteries (D-TGA) is a severe congenital heart defect which affects approximately 1 in 4,000 live births. While there are several reports of D-TGA patients with rare variants in individual genes, the majority of D-TGA cases remain genetically elusive. Familial recurrence patterns and the observation that most cases with D-TGA are sporadic suggest a polygenic inheritance for the disorder, yet this remains unexplored. OBJECTIVE: We sought to study the role of common single nucleotide polymorphisms (SNPs) in risk for D-TGA. METHODS AND RESULTS: We conducted a genome-wide association study in an international set of 1,237 patients with D-TGA and identified a genome-wide significant susceptibility locus on chromosome 3p14.3, which was subsequently replicated in an independent case-control set (rs56219800, meta-analysis P=8.6x10-10, OR=0.69 per C allele). SNP-based heritability analysis showed that 25% of variance in susceptibility to D-TGA may be explained by common variants. A genome-wide polygenic risk score derived from the discovery set was significantly associated to D-TGA in the replication set (P=4x10-5). The genome-wide significant locus (3p14.3) co-localizes with a putative regulatory element that interacts with the promoter of WNT5A, which encodes the Wnt Family Member 5A protein known for its role in cardiac development in mice. We show that this element drives reporter gene activity in the developing heart of mice and zebrafish and is bound by the developmental transcription factor TBX20. We further demonstrate that TBX20 attenuates Wnt5a expression levels in the developing mouse heart. CONCLUSIONS: This work provides support for a polygenic architecture in D-TGA and identifies a susceptibility locus on chromosome 3p14.3 near WNT5A. Genomic and functional data support a causal role of WNT5A at the locus.


Asunto(s)
Polimorfismo de Nucleótido Simple , Transposición de los Grandes Vasos/genética , Animales , Células Cultivadas , Humanos , Ratones , Herencia Multifactorial , Miocitos Cardíacos/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Transposición de los Grandes Vasos/metabolismo , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Pez Cebra
2.
Elife ; 92020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32672536

RESUMEN

Genome-wide association studies have implicated common genomic variants in the gene desert upstream of TBX3 in cardiac conduction velocity. Whether these noncoding variants affect expression of TBX3 or neighboring genes and how they affect cardiac conduction is not understood. Here, we use high-throughput STARR-seq to test the entire 1.3 Mb human and mouse TBX3 locus, including two cardiac conduction-associated variant regions, for regulatory function. We identified multiple accessible and functional regulatory DNA elements that harbor variants affecting their activity. Both variant regions drove gene expression in the cardiac conduction tissue in transgenic reporter mice. Genomic deletion from the mouse genome of one of the regions caused increased cardiac expression of only Tbx3, PR interval shortening and increased QRS duration. Combined, our findings address the mechanistic link between trait-associated variants in the gene desert, TBX3 regulation and cardiac conduction.


Asunto(s)
Sistema de Conducción Cardíaco/metabolismo , Proteínas de Dominio T Box , Animales , Arritmias Cardíacas/genética , Regulación del Desarrollo de la Expresión Génica , Estudio de Asociación del Genoma Completo , Genómica , Frecuencia Cardíaca , Humanos , Ratones , Ratones Transgénicos , Polimorfismo de Nucleótido Simple , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
3.
Cell Rep ; 28(10): 2704-2714.e5, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31484079

RESUMEN

The human ether-a-go-go-related gene KCNH2 encodes the voltage-gated potassium channel underlying IKr, a current critical for the repolarization phase of the cardiac action potential. Mutations in KCNH2 that cause a reduction of the repolarizing current can result in cardiac arrhythmias associated with long-QT syndrome. Here, we investigate the regulation of KCNH2 and identify multiple active enhancers. A transcribed enhancer ∼85 kbp downstream of Kcnh2 physically contacts the promoters of two Kcnh2 isoforms in a cardiac-specific manner in vivo. Knockdown of its ncRNA transcript results in reduced expression of Kcnh2b and two neighboring mRNAs, Nos3 and Abcb8, in vitro. Genomic deletion of the enhancer, including the ncRNA transcription start site, from the mouse genome causes a modest downregulation of both Kcnh2a and Kcnh2b in the ventricles. These findings establish that the regulation of Kcnh2a and Kcnh2b is governed by a complex regulatory landscape that involves multiple partially redundantly acting enhancers.


Asunto(s)
Canal de Potasio ERG1/genética , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica , Miocardio/metabolismo , Transcripción Genética , Animales , Sistemas CRISPR-Cas/genética , Línea Celular , Canal de Potasio ERG1/metabolismo , Femenino , Sitios Genéticos , Ventrículos Cardíacos/metabolismo , Humanos , Regiones Promotoras Genéticas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Eliminación de Secuencia , Pez Cebra
4.
Development ; 143(2): 197-210, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26786210

RESUMEN

The cardiac conduction system (CCS) consists of distinctive components that initiate and conduct the electrical impulse required for the coordinated contraction of the cardiac chambers. CCS development involves complex regulatory networks that act in stage-, tissue- and dose-dependent manners, and recent findings indicate that the activity of these networks is sensitive to common genetic variants associated with cardiac arrhythmias. Here, we review how these findings have provided novel insights into the regulatory mechanisms and transcriptional networks underlying CCS formation and function.


Asunto(s)
Sistema de Conducción Cardíaco/metabolismo , Animales , Redes Reguladoras de Genes/genética , Corazón/fisiología , Humanos
5.
Circ Res ; 115(4): 432-41, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24963028

RESUMEN

RATIONALE: The evolutionary conserved Tbx3/Tbx5 gene cluster encodes T-box transcription factors that play crucial roles in the development and homeostasis of the cardiac conduction system in human and mouse. Both genes are expressed in overlapping patterns and function in strictly tissue-specific and dose-dependent manners, yet, their regulation is poorly understood. OBJECTIVE: To analyze the mechanism underlying the complex regulation of the Tbx3/Tbx5 cluster. METHODS AND RESULTS: By probing the 3-dimensional architecture of the Tbx3/Tbx5 cluster using high-resolution circular chromosome conformation capture sequencing in vivo, we found that its regulatory landscape is in a preformed conformation similar in embryonic heart, limbs, and brain. Tbx3 and its flanking gene desert form a 1 Mbp loop between CCCTC-binding factor (CTCF)-binding sites that is separated from the neighboring Tbx5 loop. However, Ctcf inactivation did not result in transcriptional regulatory interaction between Tbx3 and Tbx5. Multiple sites within the Tbx3 locus contact the promoter, including sites corresponding to regions known to contain variations in the human genome influencing conduction. We identified an atrioventricular-specific enhancer and a pan-cardiac enhancer that contact the promoter and each other and synergize to activate transcription in the atrioventricular conduction system. CONCLUSIONS: We provide a high-resolution model of the 3-dimensional structure and function of the Tbx3/Tbx5 locus and show that the locus is organized in a preformed, permissive structure. The Tbx3 locus forms a CTCF-independent autonomous regulatory domain with multiple combinatorial regulatory elements that control the precise pattern of Tbx3 in the cardiac conduction system.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Sistema de Conducción Cardíaco/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Región de Flanqueo 3' , Animales , Sitios de Unión , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Factor de Unión a CCCTC , Cromosomas Artificiales Bacterianos , ADN Circular/genética , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Sistema de Conducción Cardíaco/embriología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Morfogénesis , Familia de Multigenes , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Transducción de Señal , Transcripción Genética , Activación Transcripcional
6.
PLoS One ; 7(10): e47644, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23077655

RESUMEN

In the mammalian heart a conduction system of nodes and conducting cells generates and transduces the electrical signals evoking myocardial contractions. Specialized pacemaker cells initiating and controlling cardiac contraction rhythmicity are localized in an anatomically identifiable structure of myocardial origin, the sinus node. We previously showed that in mammalian embryos sinus node cells originate from cardiac progenitors expressing the transcription factors T-box transcription factor 3 (Tbx3) and Islet-1 (Isl1). Although cardiac development and function are strikingly conserved amongst animal classes, in lower vertebrates neither structural nor molecular distinguishable components of a conduction system have been identified, questioning its evolutionary origin. Here we show that zebrafish embryos lacking the LIM/homeodomain-containing transcription factor Isl1 display heart rate defects related to pacemaker dysfunction. Moreover, 3D reconstructions of gene expression patterns in the embryonic and adult zebrafish heart led us to uncover a previously unidentified, Isl1-positive and Tbx2b-positive region in the myocardium at the junction of the sinus venosus and atrium. Through their long interconnecting cellular protrusions the identified Isl1-positive cells form a ring-shaped structure. In vivo labeling of the Isl1-positive cells by transgenic technology allowed their isolation and electrophysiological characterization, revealing their unique pacemaker activity. In conclusion we demonstrate that Isl1-expressing cells, organized as a ring-shaped structure around the venous pole, hold the pacemaker function in the adult zebrafish heart. We have thereby identified an evolutionary conserved, structural and molecular distinguishable component of the cardiac conduction system in a lower vertebrate.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas con Homeodominio LIM , Contracción Miocárdica , Proteínas de Dominio T Box , Factores de Transcripción , Proteínas de Pez Cebra , Animales , Desarrollo Embrionario , Corazón/embriología , Atrios Cardíacos/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Nodo Sinoatrial/citología , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...