Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 368: 122108, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39146655

RESUMEN

The current use of chemicals puts pressure on human and ecological health. Based on the Aarhus Convention, citizens have the right to have access to information on substances in their local environment. Providing this information is a major challenge, especially considering complex mixtures, as the current substance-by-substance risk assessment may not adequately address the risk of co-exposure to multiple substances. Here, we provide an overview of the currently available indicators in the Netherlands to explore current scientific possibilities to indicate the impacts of complex chemical mixtures in the environment on human health and ecology at the local scale. This is limited to impact estimates on freshwater species for 701 substances, impact estimates of four metals on soil organisms, and impacts on human health for particulate matter (PM10) and nitrogen dioxide (NO2) in air. The main limiting factors in developing and expanding these indicators to cover more compartments and substances are the availability of emission and concentration data of substances and dose-response relationships at the population (human health) or community (ecology) level. As ways forward, we propose; 1) developing cumulative assessment groups (CAGs) for substances on the European Pollutant Transfer and Release Register and Water Framework Directive substance lists, to enable the development of mixture indicators based on mixture risk assessment and concentration addition principles; 2) to gain insight into local mixtures by also applying these CAGs to emission data, which is available for soil and air for more substances than concentrations data; 3) the application of analytical non-target screening methods as well as effect-based methods for whole-mixture assessment.

2.
Chemosphere ; 351: 141237, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242512

RESUMEN

As a result of proposed global restrictions and regulations on current-use per-and polyfluoroalkyl substances (PFAS), research on possible alternatives is highly required. In this study, phase I in vitro metabolism of two novel prototype PFAS in human and rat was investigated. These prototype chemicals are intended to be safer-by-design and expected to mineralize completely, and thus be less persistent in the environment compared to the PFAS available on the market. Following incubation with rat liver S9 (RL-S9) fractions, two main metabolites per initial substance were produced, namely an alcohol and a short-chain carboxylic acid. While with human liver S9 (HL-S9) fractions, only the short-chain carboxylic acid was detected. Beyond these major metabolites, two and five additional metabolites were identified at very low levels by non-targeted screening for the ether- and thioether-linked prototype chemicals, respectively. Overall, complete mineralization during the in vitro hepatic metabolism of these novel PFAS by HL-S9 and RL-S9 fractions was not observed. The reaction kinetics of the surfactants was determined by using the metabolite formation, rather than the substrate depletion approach. With rat liver enzymes, the formation rates of primary metabolite alcohols were at least two orders of magnitude higher than those of secondary metabolite carboxylic acids. When incubating with human liver enzymes, the formation rates of single metabolite carboxylic acids, were similar or smaller than those experienced in rat. It also indicates that the overall metabolic rate and clearance of surfactants are significantly higher in rat liver than in human liver. The maximum formation rate of the thioether congener exceeded 10-fold that of the ether in humans but were similar in rats. Overall, the results suggest that metabolism of the prototype chemicals followed a similar trend to those reported in studies of fluorotelomer alcohols.


Asunto(s)
Fluorocarburos , Hígado , Ratas , Humanos , Animales , Hígado/metabolismo , Éteres , Ácidos Carboxílicos/metabolismo , Sulfuros/metabolismo , Tensoactivos/metabolismo , Fluorocarburos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...