RESUMEN
Background: Abnormal substrate on invasive electroanatomic mapping (EAM) correlates with areas of myocardial thinning and fibrofatty replacement in Arrhythmogenic Cardiomyopathy (ACM). However, EAM parameters are absent from all sets of diagnostic criteria for ACM. Case summary: A 41-year-old female with no significant family history was referred for evaluation of frequent premature ventricular complexes (PVCs). Twelve-lead ECG showed diffuse low-voltage QRS complexes. Holter monitor showed 28% burden of PVCs with various morphologies consistent with right ventricular (RV) inflow and outflow tract exits. Transthoracic echocardiogram revealed normal biventricular function and dimension. Cardiac magnetic resonance revealed a mildly increased indexed RV end-diastolic volume with normal RV systolic function and no dyssynchrony, akinesia, dyskinesia, or late gadolinium enhancement. Electrophysiologic study demonstrated 2 predominant PVC morphologies that were targeted with ablation, in addition to extensive abnormality with low-voltage and fractionated electrograms in the peri-tricuspid and right ventricular outflow tract free wall regions with septal sparing, suggestive of RV cardiomyopathy. Subsequent genetic testing revealed two pathogenic variants in the desmoplakin and plakophilin-2 genes, confirming the diagnosis of ACM. Conclusion: Advanced RV electropathy can precede RV structural changes in ACM. Invasive evaluation of the electroanatomic substrate should be considered in select cases even when imaging findings are not diagnostic. Future iterations of ACM guidelines may need to consider EAM substrate as one of the diagnostic criteria. A high index of diagnostic suspicion for ACM should be maintained in patients with multifocal RV ectopy.
Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Humanos , Fibrilación Atrial/cirugía , Fibrilación Atrial/terapia , Ablación por Catéter/métodos , Masculino , Procedimientos Quirúrgicos Cardíacos/métodos , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Anciano , Persona de Mediana Edad , Femenino , Pericardio/cirugíaRESUMEN
BACKGROUND: Modulation of the cardiac autonomic nervous system (ANS) is a promising adjuvant therapy in the treatment of atrial fibrillation (AF). In pre-clinical models, pulsed field (PF) energy has the advantage of selectively ablating the epicardial ganglionated plexi (GP) that govern the ANS. This study aims to demonstrate the feasibility and safety of epicardial ablation of the GPs with PF during cardiac surgery with a primary efficacy outcome of prolongation of the atrial effective refractory period (AERP). METHODS: In a single-arm, prospective analysis, patients with or without a history of AF underwent epicardial GP ablation with PF during coronary artery bypass grafting (CABG). AERP was determined immediately pre- and post- GP ablation to assess cardiac ANS function. Holter monitors were performed to determine rhythm status and heart rate variability (HRV) at baseline and at 1-month post-procedure. RESULTS: Of 24 patients, 23 (96%) received the full ablation protocol. No device-related adverse effects were noted. GP ablation resulted in a 20.7 ± 19.9% extension in AERP (P < 0.001). Post-operative AF was observed in 7 (29%) patients. Holter monitoring demonstrated an increase in mean heart rate (74.0 ± 8.7 vs. 80.6 ± 12.3, P = 0.01). There were no significant changes in HRV. There were no study-related complications. CONCLUSIONS: This study demonstrates the safety and feasibility of epicardial ablation of the GP using PF to modulate the ANS during cardiac surgery. Large, randomized analyses are necessary to determine whether epicardial PF ablation can offer a meaningful impact on the cardiac ANS and reduce AF. TRIAL REGISTRATION: Clinical trial registration: NCT04775264.
Asunto(s)
Angioplastia Coronaria con Balón , Aterectomía Coronaria , Enfermedad de la Arteria Coronaria , Humanos , Aterectomía Coronaria/efectos adversos , Resultado del Tratamiento , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/terapia , Angiografía Coronaria , AterectomíaRESUMEN
Atrial fibrillation (AF) is the most common cardiac arrhythmia affecting millions of people worldwide. The cardiac autonomic nervous system (ANS) is widely recognized as playing a key role in both the initiation and propagation of AF. This paper reviews the background and development of a unique cardioneuroablation technique for the modulation of the cardiac ANS as a potential treatment for AF. The treatment uses pulsed electric field energy to selectively electroporate ANS structures on the epicardial surface of the heart. Insights from in vitro studies and electric field models are presented as well as data from both pre-clinical and early clinical studies.
RESUMEN
Intrinsic antitachycardia pacing (iATP) is a novel, automated antitachycardia pacing (ATP) algorithm that provides individualized therapy to terminate ventricular tachycardia (VT). If the first ATP attempt is unsuccessful, the algorithm analyzes the tachycardia cycle length and the postpacing interval and adjusts the subsequent sequence to successfully terminate VT. This algorithm was effective in a single clinical study without a comparator arm. However, iATP failure has not been well-documented in the literature. This publication represents the first case series with episode analysis of iATP failure, including a demonstration of its proarrhythmic effect.
Asunto(s)
Estimulación Cardíaca Artificial , Taquicardia Ventricular , Humanos , Estimulación Cardíaca Artificial/efectos adversos , Taquicardia Ventricular/terapia , Algoritmos , Adenosina TrifosfatoRESUMEN
Idiopathic ventricular tachycardia (VT) is an important cause of morbidity and less commonly, mortality in patients with structurally normal hearts. Appropriate diagnosis and management are predicated on an understanding of the mechanism, relevant cardiac anatomy, and associated ECG signatures. Catheter ablation is a viable strategy to adequately treat and potentially provide a cure in patients that are intolerant to medications or when these are ineffective. In this review, we discuss special approaches and considerations for effective and safe ablation of VT arising from the right ventricular outflow tract, left ventricular outflow tract, left ventricular fascicles, papillary muscles, and moderator band.
RESUMEN
Epicardial pulsed field ablation (PFA) of ganglionated plexi (GPs) is being explored as a potential treatment for atrial fibrillation. Initial work using open-chest access with a monopolar ablation device has been completed. This study describes the early development work for a device that can be used with subxiphoid access and deliver bipolar ablation pulses. Electric field computational models have been used for the initial guidance on pulse parameters. An in vivo assessment of these ablation parameters has been performed in an open-chest canine study, while subxiphoid access and navigation of the device has been demonstrated in a porcine model. Results from this acute study have demonstrated the promising potential of this approach.
RESUMEN
BACKGROUND: Previous animal studies have shown no significant vascular injury from pulsed electrical field (PEF) ablation. We sought to assess the effect of PEF on swine coronary arteries. METHODS: We performed intracoronary and epicardial (near the coronary artery) PEF ablations in swine pretreated with dual antiplatelet and antiarrhythmic therapy. Intracoronary PEF was delivered using MapiT catheters (Biotronik, Berlin), whereas epicardial PEF was delivered using EPT catheters (Boston Scientific, MA). PEF pulse duration was microseconds (Nanoknife 3.0, Angio Dynamics, NY) or nanoseconds (CellFX, Pulse Biosciences, CA). RESULTS: We performed 39 intracoronary ablations in 10 swine and 20 epicardial-pericoronary ablations in 4 separate swine. Intracoronary PEF was delivered at higher energy compared with epicardial PEF (46 [interquartile range, IQR 20-85] J versus 10 [IQR 10-11] J, P < 0.01). Reversible coronary spasm occurred in 49% intracoronary ablations and 45% epicardial ablations (P=0.80). At the end study, fixed coronary stenosis was demonstrated in 44% intracoronary ablations (80% for microsecond PEF and 18% for nanosecond PEF) and 0% epicardial ablations. Visible hemorrhagic and/or fibrotic myocardial lesions were observed at necropsy with similar frequency between intracoronary and epicardial PEF (45% versus 50%, P=0.70). Nanosecond PEF (49 ablations in 11 swine), when compared with microsecond PEF (10 intracoronary ablations in 3 swine), resulted in lower energy delivery (21 [IQR 10-46] J versus 129 [IQR 24-143] J, P=0.03) and less incidence of fixed coronary stenosis (18% versus 80%, P=0.04). CONCLUSIONS: In the swine model, intracoronary PEF resulted both in significant coronary spasm and fixed coronary stenosis. Epicardial PEF, delivered at lower energy, resulted in reversible spasm but no fixed coronary stenosis.
Asunto(s)
Ablación por Catéter , Estenosis Coronaria , Vasoespasmo Coronario , Porcinos , Animales , Vasos Coronarios/cirugía , Vasos Coronarios/lesiones , Ablación por Catéter/efectos adversos , Ablación por Catéter/métodos , Estenosis Coronaria/cirugía , Espasmo/patología , Angiografía CoronariaRESUMEN
BACKGROUND: Pulsed electric field (PEF) ablation is an emerging modality for the treatment of cardiac arrhythmias. Data regarding effects on the interventricular septum are limited, and the optimal delivery protocol and electrode configuration remain undefined. OBJECTIVES: This study sought to evaluate the electrophysiological, imaging, and histological characteristics of bipolar direct-current PEF delivered across the interventricular septum. METHODS: PEF was applied between identical solid-tip ablation catheters positioned on either side of the septum in a chronic canine model. Intracardiac and surface electrophysiological data were recorded following delivery. In 4 animals, cardiac magnetic resonance (CMR) was performed early (6 ± 2 days) and late (30 ± 2 days) postablation. After 4 weeks of survival, cardiac specimens were sectioned for histopathological analysis. RESULTS: In 8 canines, PEF was delivered in 27 separate septal sites (45 ± 17 J/site) with either microsecond or nanosecond PEF. Acute complications included transient complete atrioventricular block in 5 animals (63%) after delivery at the anterobasal septum, with right bundle branch block persisting in 3 (38%). Ventricular fibrillation occurred in 1 animal during microsecond but not nanosecond PEF. Postprocedural CMR showed prominent edema and significant left ventricular systolic dysfunction, which recovered with late imaging. At 4 weeks, 36 individual well-demarcated lesions were demonstrated by CMR and histopathology. Lesion depth measured by histology was 2.6 ± 2.1 mm (maximum 10.9 mm and near transmural). CONCLUSIONS: Bipolar PEF ablation of the interventricular septum is feasible and can produce near transmural lesions. Myocardial stunning, edema, and conduction system injury may occur transiently. Further studies are required to optimize safe delivery and efficacious lesions.
Asunto(s)
Ablación por Catéter , Tabique Interventricular , Animales , Bloqueo de Rama , Ablación por Catéter/métodos , Perros , Electroporación , Sistema de Conducción Cardíaco , Tabique Interventricular/diagnóstico por imagen , Tabique Interventricular/cirugíaRESUMEN
BACKGROUND: Mitral annular disjunction (MAD) has recently been recognized as an arrhythmogenic entity. Data on the electrophysiological substrate as well as the outcomes of catheter ablation of ventricular arrhythmias in patients with MAD is limited. METHODS: Forty patients with MAD (mean age 47±15 years; 70% female) underwent catheter ablation for ventricular arrhythmias. Detailed clinical, electrocardiographic, cardiac imaging, and procedural data were collected. Clinical outcomes were compared between patients who had substrate modification in the MAD area and those who did not. RESULTS: Twenty-three (57.5%) patients had ablation for premature ventricular contractions, 10 (25%) patients for sustained ventricular tachycardia, and 7 (17.5%) patients for premature ventricular contraction-triggered ventricular fibrillation. Mean end-systolic MAD length was 10.58±3.49 mm on transthoracic echocardiography. Seventeen (42.5%) patients had preprocedural cardiac magnetic resonance imaging, and 5 (29%) patients had late gadolinium enhancement. Among the 18 (45%) patients who had abnormal local electrograms (low voltage, long-duration, fractionated, isolated mid-diastolic potentials) during electroanatomical mapping, 10 (25%) patients had abnormal electrograms in the anterolateral mitral annulus and/or MAD area. Substrate modification was performed in 10 (25%) patients. Catheter ablation was acutely successful in 36 (90%) patients (elimination of premature ventricular contraction or noninducibility of ventricular tachycardia). After a median follow-up duration of 54.08 (interquartile range, 10.67-89.79) months, premature ventricular contraction burden decreased from a median of 9.75% (interquartile range, 3.25-14) before the ablation to a median of 4% (interquartile range, 1-7.75) after the ablation (P=0.03 [95% CI, 0.055-6.5]). Eight (20.5%) patients had repeat ablation for ventricular arrhythmias. Substrate modification of the MAD was associated with a trend toward lower rates of repeat ablation (0% versus 26.7%; P=0.16). CONCLUSIONS: Patients with MAD have a complex arrhythmogenic substrate, and catheter ablation is effective in reducing recurrence of ventricular arrhythmias. Substrate mapping and ablation may be considered in these patients.
Asunto(s)
Ablación por Catéter , Taquicardia Ventricular , Complejos Prematuros Ventriculares , Adulto , Ablación por Catéter/efectos adversos , Ablación por Catéter/métodos , Medios de Contraste , Femenino , Gadolinio , Humanos , Masculino , Persona de Mediana Edad , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/etiología , Taquicardia Ventricular/cirugía , Complejos Prematuros Ventriculares/diagnóstico , Complejos Prematuros Ventriculares/cirugíaRESUMEN
Intrapericardial paragangliomas are rare, highly vascular tumors that frequently adhere to adjacent structures and blood vessels, making surgical resection challenging. In this case series, we discuss the role of multimodality imaging and preoperative embolization in the management of 3 patients presenting with intrapericardial paragangliomas. (Level of Difficulty: Advanced.).
RESUMEN
This study aimed to evaluate the safety and acute effect on markers of cardiac autonomic tone following pulsed electric fields (PEFs) delivered to epicardial ganglionated plexi (GP) during a cardiac surgical procedure. Ablation of GP as a treatment for atrial fibrillation (AF) has shown promise, but thermal ablation energy sources are limited by the risk of inadvertent collateral tissue injury. In acute canine experiments, median sternotomy was performed to facilitate the identification of 5 epicardial GP regions using an anatomy-guided approach. Each site was targeted with saline-irrigated PEF (1000 V, 100 µs, 10 electrocardiogram [ECG]-synchronized pulse sequences). Atrial effective refractory period (AERP) and local electrogram (EGM) amplitude were measured before and after each treatment. Histology was performed on samples from treatment-adjacent structures. In 5 animals, 30 (n = 2) and 60 (n = 3) pulses were successfully delivered to each of the 5 target sites. There was no difference in local atrial EGM amplitude before and after PEF application at each site (1.83 ± 0.41 vs. 1.92 ± 0.53 mV, P = .72). The mean AERP increased from 97 ± 15 ms at baseline to 115 ± 7 ms following treatment at all sites (18.6% increase; 95% confidence interval, 1.9-35.2; P = .037). There were no sustained ventricular arrhythmias or acute evidence of ischemia following delivery. Histology showed complete preservation of adjacent atrial myocardium, phrenic nerves, pericardium, and esophagus. Use of PEF to target regions rich in cardiac GP in open-chest canine experiments was feasible and effective at acutely altering markers of cardiac autonomic tone.