Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Comput Methods Programs Biomed ; 256: 108395, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39213899

RESUMEN

BACKGROUND AND OBJECTIVE: The use of deep learning to undertake shape analysis of the complexities of the human head holds great promise. However, there have traditionally been a number of barriers to accurate modelling, especially when operating on both a global and local level. METHODS: In this work, we will discuss the application of the Swap Disentangled Variational Autoencoder (SD-VAE) with relevance to Crouzon, Apert and Muenke syndromes. The model is trained on a dataset of 3D meshes of healthy and syndromic patients which was increased in size with a novel data augmentation technique based on spectral interpolation. Thanks to its semantically meaningful and disentangled latent representation, SD-VAE is used to analyse and generate head shapes while considering the influence of different anatomical sub-units. RESULTS: Although syndrome classification is performed on the entire mesh, it is also possible, for the first time, to analyse the influence of each region of the head on the syndromic phenotype. By manipulating specific parameters of the generative model, and producing procedure-specific new shapes, it is also possible to approximate the outcome of a range of craniofacial surgical procedures. CONCLUSION: This work opens new avenues to advance diagnosis, aids surgical planning and allows for the objective evaluation of surgical outcomes. Our code is available at github.com/simofoti/CraniofacialSD-VAE.

2.
Plast Reconstr Surg ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39212945

RESUMEN

BACKGROUND: Advancements in artificial intelligence and the development of shape models that quantify normal head shape and facial morphology provide frameworks by which the outcomes of craniofacial surgery can be compared. In this work, we will demonstrate the use of the Swap Disentangled Variational Autoencoder (SD-VAE) to objectively assess changes following midfacial surgery. MATERIALS AND METHODS: Our model is trained on a dataset of 1405 3D meshes of healthy and syndromic patients which was augmented using a technique based on spectral interpolation. Patients with a diagnosis of Apert and Crouzon syndrome who had undergone sub- or trans-cranial midfacial procedures utilising rigid external distraction were then interpreted using this model as the point of comparison. RESULTS: A total of 56 patients met our inclusion criteria, 20 with Apert and 36 with Crouzon syndrome. By using linear discriminant analysis to project the high-dimensional vectors derived by SD-VAE onto a 2D space, the shape properties of Apert and Crouzon syndrome can be visualised in relation to the healthy population. In this way, we are able to show how surgery elicits global shape changes in each patient. To assess the regional movements achieved during surgery, we use a novel metric derived from the Malahanobis distance to quantify movements through the latent space. CONCLUSION: Objective outcome evaluation, which encourages in-depth analysis and enhances decision making, is essential for the progression of surgical practice. We have demonstrated how artificial intelligence has the ability to improve our understanding of surgery and its effect on craniofacial morphology.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39187417

RESUMEN

Apert (AS), Crouzon (CS), Muenke (MS), Pfeiffer (PS), and Saethre Chotzen (SCS) are among the most frequently diagnosed syndromic craniosynostoses. The aims of this study were (1) to train an innovative model using artificial intelligence (AI)-based methods on two-dimensional facial frontal, lateral, and external ear photographs to assist diagnosis for syndromic craniosynostoses vs controls, and (2) to screen for genotype/phenotype correlations in AS, CS, and PS. We included retrospectively and prospectively, from 1979 to 2023, all frontal and lateral pictures of patients genetically diagnosed with AS, CS, MS, PS and SCS syndromes. After a deep learning-based preprocessing, we extracted geometric and textural features and used XGboost (eXtreme Gradient Boosting) to classify patients. The model was tested on an independent international validation set of genetically confirmed patients and non-syndromic controls. Between 1979 and 2023, we included 2228 frontal and lateral facial photographs corresponding to 541 patients. In all, 70.2% [0.593-0.797] (p < 0.001) of patients in the validation set were correctly diagnosed. Genotypes linked to a splice donor site of FGFR2 in Crouzon-Pfeiffer syndrome (CPS) caused a milder phenotype in CPS. Here we report a new method for the automatic detection of syndromic craniosynostoses using AI.

4.
Plast Reconstr Surg ; 152(4): 833-840, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36940153

RESUMEN

BACKGROUND: Frontofacial surgery (FFS) creates a communication between the cranial and nasal cavities and is associated with significant infection risk. After a cluster of infections affecting patients undergoing FFS, a root cause analysis of index cases was undertaken, but no specifically remedial causes were identified. Basic principles incorporating known risk factors for the prevention of surgical-site infection were then applied to the creation of a perioperative management protocol. This study analyzes infection rates before and after its implementation. METHODS: The protocol was designed around the needs of patients undergoing FFS and consists of three checklists covering their preoperative, intraoperative, and postoperative care. Compliance required the completion of each checklist. All patients undergoing FFS between 1999 and 2019 were studied retrospectively, and infections occurring before and after the implementation of the protocol were analyzed. RESULTS: One hundred three patients underwent FFS (60 monobloc and 36 facial bipartition) before the implementation of the protocol in August of 2013, and 30 patients underwent FFS after its implementation. Compliance with the protocol was 95%. After implementation, there was a statistically significant reduction in infections from 41.7% to 13.3% ( P = 0.005). CONCLUSIONS: Although no specific cause for a cluster of postoperative infection had been identified, the implementation of a bespoke protocol consisting of preoperative, perioperative, and postoperative checklists covering measures known to reduce infection risk was associated with a significant reduction in postoperative infections in patients undergoing FFS. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, III.


Asunto(s)
Cráneo , Infección de la Herida Quirúrgica , Humanos , Estudios Retrospectivos , Infección de la Herida Quirúrgica/epidemiología , Infección de la Herida Quirúrgica/etiología , Infección de la Herida Quirúrgica/prevención & control , Cara
5.
Plast Reconstr Surg ; 152(3): 612-622, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36847681

RESUMEN

BACKGROUND: Crouzon syndrome is characterized by complex craniosynostosis and midfacial hypoplasia. Where frontofacial monobloc advancement (FFMBA) is indicated, the method of distraction used to achieve advancement holds an element of equipoise. This two-center retrospective cohort study quantifies the movements produced by internal or external distraction methods used for FFMBA. Using shape analysis, this study evaluates whether the different distraction forces cause plastic deformity of the frontofacial segment, producing distinct morphologic outcomes. METHODS: Patients with Crouzon syndrome who underwent FFMBA with internal distraction [Hôpital Necker-Enfants Malades (Paris, France)] or external distraction [Great Ormond Street Hospital for Children (London, United Kingdom)] were compared. Digital Imaging and Communications in Medicine files of preoperative and postoperative computed tomographic scans were converted to three-dimensional bone meshes and skeletal movements were assessed using nonrigid iterative closest point registration. Displacements were visualized using color maps and statistical analysis of the vectors was undertaken. RESULTS: Fifty-one patients met the strict inclusion criteria. Twenty-five underwent FFMBA with external distraction and 26 with internal distraction. External distraction provides a preferential midfacial advancement, whereas internal distractors produce a more positive movement at the lateral orbital rim. This confers good orbital protection but does not advance the central midface to the same extent. Vector analysis confirmed this to be statistically significant ( P < 0.01). CONCLUSIONS: Morphologic changes resulting from monobloc surgery differ depending on the distraction technique used. Although the relative merits of internal and external distraction still stand, it may be that external distraction is more suited to addressing the midfacial biconcavity seen in syndromic craniosynostosis. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, III.


Asunto(s)
Acrocefalosindactilia , Disostosis Craneofacial , Craneosinostosis , Osteogénesis por Distracción , Niño , Humanos , Estudios Retrospectivos , Osteogénesis por Distracción/métodos , Huesos Faciales/diagnóstico por imagen , Huesos Faciales/cirugía , Disostosis Craneofacial/diagnóstico por imagen , Disostosis Craneofacial/cirugía , Craneosinostosis/diagnóstico por imagen , Craneosinostosis/cirugía , Acrocefalosindactilia/diagnóstico por imagen , Acrocefalosindactilia/cirugía
6.
Plast Reconstr Surg ; 151(3): 615-626, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36730425

RESUMEN

BACKGROUND: The timing of posterior cranial expansion for the management of intracranial pressure can be "staged" by age and dysmorphology or "expectant" by pressure monitoring. The authors report shared outcome measures from one center performing posterior vault remodeling (PCVR) or distraction (PVDO) following a staged approach and another performing spring-assisted expansion (SAPVE) following an expectant protocol. METHODS: Apert or Crouzon syndrome patients who underwent posterior expansion younger than 2 years were included. Perioperative outcomes and subsequent cranial operations were recorded up to last follow-up and intracranial volume changes measured and adjusted using growth curves. RESULTS: Thirty-eight patients were included. Following the expectant protocol, Apert patients underwent SAPVE at a younger age (8 months) than Crouzon patients (16 months). The initial surgery time was shorter but total operative time, including device removal, was longer for PVDO (3 hours 52 minutes) and SAPVE (4 hours 34 minutes) than for PCVR (3 hours 24 minutes). Growth-adjusted volume increase was significant and comparable. Fourteen percent of PCVR, 33% of PVDO, and 11% of SAPVE cases had complications, but without long-term deficits. Following the staged approach, 5% underwent only PVDO, 85% had a staged posterior followed by anterior surgery, and 10% required a third expansion. Following the expectant approach, 42% of patients had only posterior expansion at last follow-up, 32% had a secondary cranial surgery, and 26% had a third cranial expansion. CONCLUSION: Two approaches involving posterior vault expansion in young syndromic patients using three techniques resulted in comparable early volume expansion and complication profiles. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, III.


Asunto(s)
Disostosis Craneofacial , Craneosinostosis , Osteogénesis por Distracción , Humanos , Lactante , Craneosinostosis/cirugía , Cráneo/cirugía , Disostosis Craneofacial/cirugía , Evaluación de Resultado en la Atención de Salud , Osteogénesis por Distracción/métodos
8.
Eye (Lond) ; 37(1): 139-145, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-34974540

RESUMEN

AIMS: To assess the diagnostic accuracy of fundoscopy and visual evoked potentials (VEPs) in detecting intracranial hypertension (IH) in patients with craniosynostosis undergoing spring-assisted posterior vault expansion (sPVE). METHODS: Children with craniosynostosis undergoing sPVE and 48-hour intracranial pressure (ICP) monitoring were included in this single-centre, retrospective, diagnostic accuracy study. Data for ICP, fundoscopy and VEPs were analysed. Primary outcome measures were papilloedema on fundoscopy, VEP assessments and IH, defined as mean ICP > 20 mmHg. Diagnostic indices were calculated for fundoscopy and VEPs against IH. Secondary outcome measures included final visual outcomes. RESULTS: Fundoscopic examinations were available for 35 children and isolated VEPs for 30 children, 22 of whom had at least three serial VEPs. Sensitivity was 32.1% for fundoscopy (95% confidence intervals [CI]: 15.9-52.4) and 58.3% for isolated VEPs (95% CI 36.6-77.9). Specificity for IH was 100% for fundoscopy (95% CI: 59.0-100) and 83.3% for isolated VEPs (95% CI: 35.9-99.6). Where longitudinal deterioration was suspected from some prVEPs but not corroborated by all, sensitivity increased to 70.6% (95% CI: 44.0-89.7), while specificity decreased to 60% (95% CI: 14.7-94.7). Where longitudinal deterioration was clinically significant, sensitivity decreased to 47.1% (23.0-72.2) and specificity increased to 100% (47.8-100). Median final BCVA was 0.24 logMAR (n = 36). UK driving standard BCVA was achieved by 26 patients (72.2%), defined as ≥0.30 logMAR in the better eye. CONCLUSION: Papilloedema present on fundoscopy reliably indicated IH, but its absence did not exclude IH. VEP testing boosted sensitivity at the expense of specificity, depending on method of analysis.


Asunto(s)
Craneosinostosis , Hipertensión Intracraneal , Papiledema , Niño , Humanos , Papiledema/diagnóstico , Estudios Retrospectivos , Potenciales Evocados Visuales , Hipertensión Intracraneal/diagnóstico , Craneosinostosis/diagnóstico
9.
Bone Rep ; 16: 101528, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35399871

RESUMEN

Background/aim: To develop a 3D morphable model of the normal paediatric mandible to analyse shape development and growth patterns for males and females. Methods: Computed tomography (CT) data was collected for 242 healthy children referred for CT scan between 2011 and 2018 aged between 0 and 47 months (mean, 20.6 ± 13.4 months, 59.9% male). Thresholding techniques were used to segment the mandible from the CT scans. All mandible meshes were annotated using a defined set of 52 landmarks and processed such that all meshes followed a consistent triangulation. Following this, the mandible meshes were rigidly aligned to remove translation and rotation effects, while size effects were retained. Principal component analysis (PCA) was applied to the processed meshes to construct a generative 3D morphable model. Partial least squares (PLS) regression was also applied to the processed data to extract the shape modes with which to evaluate shape differences for age and sex. Growth curves were constructed for anthropometric measurements. Results: A 3D morphable model of the paediatric mandible was constructed and validated with good generalisation, compactness, and specificity. Growth curves of the assessed anthropometric measurements were plotted without significant differences between male and female subjects. The first principal component was dominated by size effects and is highly correlated with age at time of scan (Spearman's r = 0.94, p < 0.01). As with PCA, the first extracted PLS mode captures much of the size variation within the dataset and is highly correlated with age (Spearman's r = -0.94, p < 0.01). Little correlation was observed between extracted shape modes and sex with either PCA or PLS for this study population. Conclusion: The presented 3D morphable model of the paediatric mandible enables an understanding of mandibular shape development and variation by age and sex. It allowed for the construction of growth curves, which contains valuable information that can be used to enhance our understanding of various disorders that affect the mandibular development. Knowledge of shape changes in the growing mandible has potential to improve diagnostic accuracy for craniofacial conditions that impact the mandibular morphology, objective evaluation, surgical planning, and patient follow-up.

10.
Sci Rep ; 12(1): 2230, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35140239

RESUMEN

Clinical diagnosis of craniofacial anomalies requires expert knowledge. Recent studies have shown that artificial intelligence (AI) based facial analysis can match the diagnostic capabilities of expert clinicians in syndrome identification. In general, these systems use 2D images and analyse texture and colour. They are powerful tools for photographic analysis but are not suitable for use with medical imaging modalities such as ultrasound, MRI or CT, and are unable to take shape information into consideration when making a diagnostic prediction. 3D morphable models (3DMMs), and their recently proposed successors, mesh autoencoders, analyse surface topography rather than texture enabling analysis from photography and all common medical imaging modalities and present an alternative to image-based analysis. We present a craniofacial analysis framework for syndrome identification using Convolutional Mesh Autoencoders (CMAs). The models were trained using 3D photographs of the general population (LSFM and LYHM), computed tomography data (CT) scans from healthy infants and patients with 3 genetically distinct craniofacial syndromes (Muenke, Crouzon, Apert). Machine diagnosis outperformed expert clinical diagnosis with an accuracy of 99.98%, sensitivity of 99.95% and specificity of 100%. The diagnostic precision of this technique supports its potential inclusion in clinical decision support systems. Its reliance on 3D topography characterisation make it suitable for AI assisted diagnosis in medical imaging as well as photographic analysis in the clinical setting.


Asunto(s)
Inteligencia Artificial , Craneosinostosis/clasificación , Craneosinostosis/diagnóstico , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Simulación por Computador , Craneosinostosis/diagnóstico por imagen , Cara/anomalías , Cabeza/anomalías , Humanos , Lactante , Tomografía Computarizada por Rayos X
11.
J Craniomaxillofac Surg ; 50(4): 343-352, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35082088

RESUMEN

The aim of the study was to investigate whether different head shapes show different volumetric changes following spring-assisted posterior vault expansion (SA-PVE) and to investigate the influence of surgical and morphological parameters on SA-PVE. Preoperative three-dimensional skull models from patients who underwent SA-PVE were extracted from computed tomography scans. Patient head shape was described using statistical shape modelling (SSM) and principal component analysis (PCA). Preoperative and postoperative intracranial volume (ICV) and cranial index (CI) were calculated. Surgical and morphological parameters included skull bone thickness, number of springs, duration of spring insertion and type of osteotomy. In the analysis, 31 patients were included. SA-PVE resulted in a significant ICV increase (284.1 ± 171.6 cm3, p < 0.001) and a significant CI decrease (-2.9 ± 4.3%, p < 0.001). The first principal component was significantly correlated with change in ICV (Spearman ρ = 0.68, p < 0.001). Change in ICV was significantly correlated with skull bone thickness (ρ = -0.60, p < 0.001) and age at time of surgery (ρ = -0.60, p < 0.001). No correlations were found between the change in ICV and number of springs, duration of spring insertion and type of osteotomy. SA-PVE is effective for increasing the ICV and resolving raised intracranial pressure. Younger, brachycephalic patients benefit more from surgery in terms of ICV increase. Skull bone thickness seems to be a crucial factor and should be assessed to achieve optimal ICV increase. In contrast, insertion of more than two springs, duration of spring insertion or performing a fully cut through osteotomy do not seem to impact the ICV increase. When interpreting ICV increases, normal calvarial growth should be taken into account.


Asunto(s)
Craneosinostosis , Hipertensión Intracraneal , Craneosinostosis/cirugía , Cabeza , Humanos , Lactante , Cráneo/diagnóstico por imagen , Cráneo/cirugía , Tomografía Computarizada por Rayos X/métodos
13.
Skin Res Technol ; 28(2): 212-224, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34751474

RESUMEN

BACKGROUND: Many treatments aim to slow down or reverse the visible signs of skin aging and thereby improve skin quality. Measurement devices are frequently employed to measure the effects of these treatments to improve skin quality, for example, skin elasticity, color, and texture. However, it remains unknown which of these devices is most reliable and valid. MATERIALS AND METHODS: MEDLINE, Embase, Cochrane Central, Web of Science, and Google Scholar databases were searched. Instruments were scored on reporting construct validity by means of convergent validity, interobserver, intraobserver, and interinstrument reliability. RESULTS: For the evaluation of skin color, 11 studies were included describing 16 measurement devices, analyzing 3172 subjects. The most reliable device for skin color assessment is the Minolta Chromameter CR-300 due to good interobserver, intraobserver, and interinstrument reliability. For skin elasticity, seven studies assessed nine types of devices analyzing 290 subjects in total. No intra and interobserver reliability was reported. Skin texture was assessed in two studies evaluating 72 subjects using three different types of measurement devices. The PRIMOS device reported excellent intra and interobserver reliability. None of the included reviewed devices could be determined to be valid based on construct validity. CONCLUSION: The most reliable devices to evaluate skin color and texture in ordinary skin were, respectively, the Minolta Chromameter and PRIMOS. No reliable device is available to measure skin elasticity in ordinary skin and none of the included devices could be determined to be designated as valid.


Asunto(s)
Envejecimiento de la Piel , Humanos , Reproducibilidad de los Resultados , Pigmentación de la Piel
14.
Bone Rep ; 15: 101154, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34917697

RESUMEN

BACKGROUND: This study aims to capture the 3D shape of the human skull in a healthy paediatric population (0-4 years old) and construct a generative statistical shape model. METHODS: The skull bones of 178 healthy children (55% male, 20.8 ± 12.9 months) were reconstructed from computed tomography (CT) images. 29 anatomical landmarks were placed on the 3D skull reconstructions. Rotation, translation and size were removed, and all skull meshes were placed in dense correspondence using a dimensionless skull mesh template and a non-rigid iterative closest point algorithm. A 3D morphable model (3DMM) was created using principal component analysis, and intrinsically and geometrically validated with anthropometric measurements. Synthetic skull instances were generated exploiting the 3DMM and validated by comparison of the anthropometric measurements with the selected input population. RESULTS: The 3DMM of the paediatric skull 0-4 years was successfully constructed. The model was reasonably compact - 90% of the model shape variance was captured within the first 10 principal components. The generalisation error, quantifying the ability of the 3DMM to represent shape instances not encountered during training, was 0.47 mm when all model components were used. The specificity value was <0.7 mm demonstrating that novel skull instances generated by the model are realistic. The 3DMM mean shape was representative of the selected population (differences <2%). Overall, good agreement was observed in the anthropometric measures extracted from the selected population, and compared to normative literature data (max difference in the intertemporal distance) and to the synthetic generated cases. CONCLUSION: This study presents a reliable statistical shape model of the paediatric skull 0-4 years that adheres to known skull morphometric measures, can accurately represent unseen skull samples not used during model construction and can generate novel realistic skull instances, thus presenting a solution to limited availability of normative data in this field.

15.
Childs Nerv Syst ; 37(10): 3189-3197, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34554301

RESUMEN

PURPOSE: Children affected by premature fusion of the cranial sutures due to craniosynostosis can present with raised intracranial pressure and (turri)brachycephalic head shapes that require surgical treatment. Spring-assisted posterior vault expansion (SA-PVE) is the surgical technique of choice at Great Ormond Street Hospital for Children (GOSH), London, UK. This study aims to report the SA-PVE clinical experience of GOSH to date. METHODS: A retrospective review was carried out including all SA-PVE cases performed at GOSH between 2008 and 2020. Demographic and clinical data were recorded including genetic diagnosis, craniofacial surgical history, surgical indication and assessment, age at time of surgery (spring insertion and removal), operative time, in-patient stay, blood transfusion requirements, additional/secondary (cranio)facial procedures, and complications. RESULTS: Between 2008 and 2020, 200 SA-PVEs were undertaken in 184 patients (61% male). The study population consisted of patients affected by syndromic (65%) and non-syndromic disorders. Concerns regarding raised intracranial pressure were the surgical driver in 75% of the cases, with the remainder operated for shape correction. Median age for SA-PVE was 19 months (range, 2-131). Average operative time for first SA-PVE was 150 min and 87 for spring removal. Median in-patient stay was 3 nights, and 88 patients received a mean of 204.4 ml of blood transfusion at time of spring insertion. A single SA-PVE sufficed in 156 patients (85%) to date (26 springs still in situ at time of this analysis); 16 patients underwent repeat SA-PVE, whilst 12 underwent rigid redo. A second SA-PVE was needed in significantly more cases when the first SA-PVE was performed before age 1 year. Complications occurred in 26 patients with a total of 32 events, including one death. Forty-one patients underwent fronto-orbital remodelling at spring removal and 22 required additional cranio(maxillo)facial procedures. CONCLUSIONS: Spring-assisted posterior vault expansion is a safe, efficient, and effective procedure based on our 12-year experience. Those that are treated early in life might require a repeat SA-PVE. Long-term follow-up is recommended as some would require additional craniomaxillofacial correction later in life.


Asunto(s)
Craneosinostosis , Hipertensión Intracraneal , Procedimientos de Cirugía Plástica , Niño , Preescolar , Suturas Craneales/cirugía , Craneosinostosis/diagnóstico por imagen , Craneosinostosis/cirugía , Femenino , Humanos , Lactante , Masculino , Estudios Retrospectivos , Cráneo/cirugía
16.
J Craniofac Surg ; 32(8): 2646-2650, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34260460

RESUMEN

ABSTRACT: Patients with Apert syndrome experience midfacial hypoplasia, hypertelorism, and downslanting palpebral fissures which can be corrected by midfacial bipartition distraction with rigid external distraction device. Quantitative studies typically focus on quantifying rigid advancement and rotation postdistraction, but intrinsic shape changes of bone and soft tissue remain unknown. This study presents a method to quantify these changes. Pre- and post-operative computed tomography scans from patients with Apert syndrome undergoing midfacial bipartition distraction with rigid external distraction device were collected. Digital Imaging and Communications in Medicine files were converted to three-dimensional bone and soft tissue reconstructions. Postoperative reconstructions were aligned on the preoperative maxilla, followed by nonrigid iterative closest point transformation to determine local shape changes. Anatomical point-to-point displacements were calculated and visualized using a heatmap and arrow map. Nine patients were included.Zygomatic arches and frontal bone demonstrated the largest changes. Mid-lateral to supra-orbital rim showed an upward, inward motion. Mean bone displacements ranged from 3.3 to 12.8 mm. Soft tissue displacements were relatively smaller, with greatest changes at the lateral canthi. Midfacial bipartition distraction with rigid external distraction device results in upward, inward rotation of the orbits, upward rotation of the zygomatic arch, and relative posterior motion of the frontal bone. Local movements were successfully quantified using a novel method, which can be applied to other surgical techniques/syndromes.


Asunto(s)
Acrocefalosindactilia , Osteogénesis por Distracción , Acrocefalosindactilia/diagnóstico por imagen , Acrocefalosindactilia/cirugía , Humanos , Maxilar , Órbita , Cigoma
17.
J Craniofac Surg ; 32(6): 2053-2057, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33770039

RESUMEN

INTRODUCTION: Children with Apert syndrome have hypertelorism and midfacial hypoplasia, which can be treated with facial bipartition (FB), often aided by rigid external distraction. The technique involves a midline osteotomy that lateralizes the maxillary segments, resulting in posterior cross-bites and midline diastema. Varying degrees of spontaneous realignment of the dental arches occurs postoperatively. This study aims to quantify these movements and assess whether they occur as part of a wider skeletal relapse or as dental compensation. METHODS: Patients who underwent FB and had high quality computed tomography scans at the preoperative stage, immediately postsurgery, and later postoperatively were reviewed. DICOM files were converted to three-dimensional bone meshes and anatomical point-to-point displacements were quantified using nonrigid iterative closest point registration. Displacements were visualized using arrow maps, thereby providing an overview of the movements of the facial skeleton and dentition. RESULTS: Five patients with Apert syndrome were included. In all cases, the arrow maps demonstrated initial significant anterior movement of the frontofacial segment coupled with medial rotation of the orbits and transverse divergence of the maxillary arches. The bony position following initial surgery was shown to be largely stable, with primary dentoalveolar relapse correcting the dental alignment. CONCLUSIONS: This study showed that spontaneous dental compensation occurs following FB without compromising the surgical result. It may be appropriate to delay active orthodontic for 6-months postoperatively until completion of this early compensatory phase.


Asunto(s)
Acrocefalosindactilia , Osteogénesis por Distracción , Acrocefalosindactilia/diagnóstico por imagen , Acrocefalosindactilia/cirugía , Cara , Humanos , Maxilar/diagnóstico por imagen , Maxilar/cirugía , Cráneo
18.
Sci Rep ; 10(1): 18693, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33122820

RESUMEN

Lambdoid craniosynostosis (LC) is a rare non-syndromic craniosynostosis characterised by fusion of the lambdoid sutures at the back of the head. Surgical correction including the spring assisted cranioplasty is the only option to correct the asymmetry at the skull in LC. However, the aesthetic outcome from spring assisted cranioplasty may remain suboptimal. The aim of this study is to develop a parametric finite element (FE) model of the LC skulls that could be used in the future to optimise spring surgery. The skull geometries from three different LC patients who underwent spring correction were reconstructed from the pre-operative computed tomography (CT) in Simpleware ScanIP. Initially, the skull growth between the pre-operative CT imaging and surgical intervention was simulated using MSC Marc. The osteotomies and spring implantation were performed to simulate the skull expansion due to the spring forces and skull growth between surgery and post-operative CT imaging in MSC Marc. Surface deviation between the FE models and post-operative skull models reconstructed from CT images changed between ± 5 mm over the skull geometries. Replicating spring assisted cranioplasty in LC patients allow to tune the parameters for surgical planning, which may help to improve outcomes in LC surgeries in the future.


Asunto(s)
Simulación por Computador , Suturas Craneales/cirugía , Craneosinostosis/cirugía , Procedimientos de Cirugía Plástica/métodos , Femenino , Análisis de Elementos Finitos , Humanos , Lactante , Masculino
20.
Aesthet Surg J ; 40(9): 931-937, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31165144

RESUMEN

BACKGROUND: Aging of the neck results in an increased cervicomental angle, which can be treated by various surgical and nonsurgical procedures. To measure the success of these procedures, standardized validated objective photographic measurement tools are needed. However, no online standardized photographic measurement tools exist for the assessment of the cervicomental angle. OBJECTIVES: The purpose of this study was to establish a validated and reliable measurement tool for the assessment of the cervicomental angle based on the Rainbow Scale. METHODS: A 5-point photographic rating scale was developed and created from 1 photograph with Adobe Photoshop. Fifteen reference photographs of women, 3 photographs per grade, were included for validation. Seven panelists (ie, plastic and maxillofacial surgeons) assessed the reference photographs 3 times with a minimal interval of 3 days in an online survey. Intra- and inter-observer agreements were calculated utilizing the weighted kappa coefficient. RESULTS: Mean intra-observer agreement was 0.93 (0.78-1.00). Mean interobserver agreement was 0.796 (0.574-0.961) for survey 1, 0.868 (0.690-0.960) for survey 2, and 0.820 (0.676-0.959) for survey 3. CONCLUSIONS: The Rainbow Scale for the assessment of the cervicomental angle has been validated in an online fashion. The scale is reproducible and reliable and requires no learning curve. Potential applications include objective assessment of neck treatment planning and surgical outcome.


Asunto(s)
Fotograbar , Envejecimiento de la Piel , Envejecimiento , Femenino , Humanos , Variaciones Dependientes del Observador , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...