RESUMEN
The rapid increase of anthropogenic activity at shipping ports and surrounding coastal areas has been correlated with higher chemical contamination entering the surrounding marine environment. Chemical contaminants in marine environments can lead to significant health problems for green turtles (Chelonia mydas), especially when these contaminants accumulate in their foraging grounds. This study examined the exposure and toxicological effects of chemical contaminants on green turtle cells using a species-specific cell viability assay. Using the QuEChERs extraction, organic contaminants were extracted from 60 blood samples collected from green turtles in three foraging locations: Port Curtis, and two reefs (Heron Reef and Hoskyn-Fairfax Reefs) within the Capricorn Bunker Group of the outer Great Barrier Reef. Blood extracts were tested for cytotoxicity against primary green turtle fibroblast cells using an in vitro resazurin bioassay to assess cell viability. Extracts from Gladstone and Heron Reef indicated significant chemical contamination, at levels high enough to cause adverse health effects of green turtles. Very low toxicity values at the Hoskyn-Fairfax Reefs location indicate its potential to be established as a reference site for the southern Great Barrier Reef.
Asunto(s)
Bioensayo , Monitoreo del Ambiente , Tortugas , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Especificidad de la EspecieRESUMEN
The increasing presence of contaminants of emerging concern in wastewater and their potential environmental risks require improved monitoring and analysis methods. Direct toxicity assessment (DTA) using bioassays can complement chemical analysis of wastewater discharge, but traditional in vivo tests have ethical considerations and are expensive, low-throughput, and limited to apical endpoints (mortality, reproduction, development, and growth). In vitro bioassays offer an alternative approach that is cheaper, faster, and more ethical, and can provide higher sensitivity for some environmentally relevant endpoints. This study explores the potential benefits of using whole water samples of wastewater and environmental surface water instead of traditional solid phase extraction (SPE) methods for in vitro bioassays testing. Whole water samples produced a stronger response in most bioassays, likely due to the loss or alteration of contaminants during SPE sample extraction. In addition, there was no notable difference in results for most bioassays after freezing whole water samples, which allows for increased flexibility in testing timelines and cost savings. These findings highlight the potential advantages of using whole water samples in DTA and provide a framework for future research in this area.
Asunto(s)
Bioensayo , Monitoreo del Ambiente , Aguas Residuales , Contaminantes Químicos del Agua , Bioensayo/métodos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Monitoreo del Ambiente/métodos , Aguas Residuales/química , Extracción en Fase Sólida/métodos , Animales , Pruebas de Toxicidad/métodosRESUMEN
In this study, the performance of standalone ultraviolet (UV) photolysis and UV-based advanced oxidation processes (AOPs), namely, UV/hydrogen peroxide, UV/chlorine, UV/persulphate, and UV/permonosulphate, were investigated for the degradation of 31 trace organic contaminants (TrOCs). Under the tested conditions, standalone UV photolysis did not achieve effective removal of TrOCs. To improve the degradation efficiency of UV photolysis, four different oxidants were added individually to the test solution. The effect of these oxidants in the absence of UV irradiation was also explored and only chlorine showed promising degradation of some contaminants. During the chlorination of 31 investigated TrOCs, only six demonstrated greater than 50% degradation. The combined UV-based AOPs demonstrated much improved degradation (ranging from 65 to 100%) depending on TrOC-structure and oxidant concentration. The UV/hydrogen peroxide process showed similar degradation of TrOCs, irrespective of the functional groups (i.e., electron withdrawing groups, EWGs and electron donating groups, EDGs) present in their structures. Conversely, the UV/sulphate and UV/chlorine based processes achieved better degradation of the TrOCs with EDGs in their structures. TrOCs degradation improved up to 40% when oxidants concentrations were increased from 0.1 to 1 mM, and further increasing the concentration to 2 mM did not improve degradation. Toxicity evaluation using bioluminescence test (BLT assay) demonstrated that except for UV/hydrogen peroxide, all UV-based AOPs increased the toxicity of the treated effluent, indicating generation of toxic by-products. This study elucidates the performance of four different UV-based AOPs for the removal of commonly detected diverse TrOCs for the first time.
Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Peróxido de Hidrógeno/química , Cloro , Contaminantes Químicos del Agua/análisis , Oxidantes , Oxidación-Reducción , Fotólisis , Rayos UltravioletaRESUMEN
Queensland loggerhead turtle nest numbers at Mon Repos (MR) indicate population recovery that doesn't occur at Wreck Island (WI). Previous research illustrated that MR and WI turtles forage in different locations, potentially indicating risks differences. Blood, scute, and egg were collected from turtles nesting at MR and WI, with known foraging sites (from concurrent studies). Trace element and organic contaminants were assessed via acid digestion and in vitro cytotoxicity bioassays, respectively. WI turtles had significantly higher scute uranium and blood molybdenum compared to MR turtles, and arsenic was higher in WI turtles foraging north and MR turtles foraging south. Egg and blood titanium, manganese, cadmium, barium, lead, and molybdenum, and scute and egg selenium and mercury significantly correlated. Blood (75 %) extracts produced significant toxicity in vitro in turtle fibroblast cells. In conclusion, reducing chemical exposure at higher risk foraging sites would likely benefit sea turtles and their offspring.
Asunto(s)
Selenio , Oligoelementos , Tortugas , Animales , Molibdeno , Queensland , Comportamiento de NidificaciónRESUMEN
Understanding the impacts of chemical exposure in marine wildlife is challenging, due to practical and ethical constraints that preclude traditional toxicology research on these animals. This study addressed some of these limitations by presenting an ethical and high throughput cell-based approach to elucidate molecular-level effects of contaminants on sea turtles. The experimental design addressed basic questions of cell-based toxicology, including chemical dose and exposure time. Primary green turtle skin cells were exposed to polychlorinated biphenyl (PCB) 153 and perfluorononanoic acid (PFNA) for 24 and 48 h, at three sub-lethal, environmentally relevant concentrations (1, 10 and 100 µg/L). Sequential window acquisition of all theoretical mass spectra (SWATH-MS) identified over 1000 differentially abundant proteins within the 1% false discovery rate (FDR) threshold. The 24 h exposure resulted in a greater number of differentially abundant proteins, compared to 48 h exposure, for both contaminants. However, there were no statistically significant dose-response relationships for the number of differentially synthesised proteins, nor differences in the proportion of increased vs decreased proteins between or within exposure times. Known in vivo markers of contaminant exposure, superoxide dismutase and glutathione S-transferase, were differentially abundant following exposure to PCB153 and PFNA. SIGNIFICANCE: Cell-based (in vitro) proteomics provides an ethical and high throughput approach to understanding the impacts of chemical contamination on sea turtles. Through investigating effects of chemical dose and exposure duration on unique protein abundance in vitro, this study provides an optimised framework for conducting cell-based studies in wildlife proteomics, and highlights that proteins detected in vitro could act as biomarkers of chemical exposure and effect in vivo.
Asunto(s)
Bifenilos Policlorados , Tortugas , Contaminantes Químicos del Agua , Animales , Tortugas/metabolismo , Bifenilos Policlorados/toxicidad , Bifenilos Policlorados/análisis , Animales Salvajes , Piel/químicaRESUMEN
Cell-based toxicity testing has emerged as a useful tool in (eco)toxicological research, allowing the ethical assessment of the effects of contaminants such as trace metals on marine megafauna. However, metal interactions with various dissolved ligands in the microplate environment may influence the effective exposure concentrations. Hence, the cells are not exposed to the nominal concentrations within the test system. This study aimed to establish and evaluate the effectiveness of cell-based bioassays for investigating the toxicity of selected metals in dugongs through the following objectives: (1) measure the cytotoxic potential of cadmium (Cd2+), and chromium (Cr6+) to dugong skin cell cultures, (2) investigate the interactions between media constituents and selected trace metals in cell-based bioassays, and (3) evaluate the risk to a free-ranging population of dugong based on effect values. Chromium was the most toxic of the metals tested (EC50 = 1.14 µM), followed by Cd (EC50 = 6.35 µM). Assessment of ultrafiltered (< 3 kDa) exposure media showed that 1% and 92.5% of Cr and Cd were associated with larger organic components of the media. Further, the binding of Cd to media constituents was calculated to underestimate Cd toxicity in cell-based assays by an order of magnitude. This understanding of metal partitioning in cell-based bioassays provides a more accurate method for assessing toxicity in cell-based bioassays. In addition, this study illustrated that dugong cells are more sensitive to Cr and Cd than other marine wildlife species. The chemical risk assessment found the dugong population in Moreton Bay to be at high risk from Cd exposure.
Asunto(s)
Dugong , Oligoelementos , Contaminantes Químicos del Agua , Animales , Dugong/metabolismo , Cadmio/toxicidad , Cadmio/metabolismo , Contaminantes Químicos del Agua/toxicidad , Metales/metabolismo , Cromo , Oligoelementos/metabolismo , BioensayoRESUMEN
All seven species of sea turtle are facing increasing pressures from human activities that are impacting their health. Changes in circulating blood proteins of an individual, or all members of a population, can provide an early indicator of adverse health outcomes. Non-targeted measurement of all detectable proteins in a blood sample can indicate physiological changes. In the context of wildlife toxicology, this technique can provide a powerful tool for discovering biomarkers of chemical exposure and effect. This study presents a non-targeted examination of the protein abundance in sea turtle plasma obtained from three geographically distinct foraging populations of green turtles (Chelonia mydas) on the Queensland coast. Relative changes in protein expression between sites were compared, and potential markers of contaminant exposure were investigated. Blood plasma protein profiles were distinct between populations, with 85 out of the 116 identified proteins differentially expressed (p < 0.001). The most strongly dysregulated proteins were predominantly acute phase proteins, suggestive of differing immune status between the populations. The highest upregulation of known markers of immunotoxicity, such as pentraxin fusion and complement factor h, was observed in the Moreton Bay turtles. Forty-five different organohalogens were also measured in green turtle plasma samples as exposure to some organohalogens (e.g., polychlorinated biphenyls) has previously been identified as a cause for immune dysregulation in marine animals. The few detected organohalogens were at very low (pg/mL) concentrations in turtles from all sites, and are unlikely to be the cause of the proteome differences observed. However, the changes in protein expression may be indicative of exposure to other chemicals or environmental stressors. The results of this study provide important information about differences in protein expression between different populations of turtles, and guide future toxicological and health studies on east-Australian green sea turtles.
Asunto(s)
Tortugas , Contaminantes Químicos del Agua , Animales , Humanos , Tortugas/metabolismo , Contaminantes Químicos del Agua/análisis , Proteómica , Australia , InmunidadRESUMEN
Given their threatened status, there is considerable interest in establishing monitoring techniques that can be used to evaluate the health of sea turtles in the wild. The present study represents a methodological contribution towards field-scale metabolomic assessment of sea turtles, by exploring differences in blood biochemistry associated with site characteristics and capture technique. We compared the metabolome of blood from animals at three locations (two coastal and one reefal), collected from turtles that were either resting or active, and sampled across multiple seasons at one location. Our results show clear differences in the metabolome of turtles from the three locations, some of which are likely attributable to differences in diet or forage quality and others which may reflect differences in other factors (e.g., occurrence of land-based contaminants or other biotic and/or abiotic stressors) between coastal and reefal sites. Our analysis also revealed the influence of capture technique on metabolite profiles, with numerous markers of physical exertion in animals captured while active that were absent in turtles sampled while resting. We observed a modest potential for temporal differences in the metabolome, but controlling for sampling time did not change the overall conclusions of our study. This suggests that temporal differences in the metabolome warrant consideration when designing studies to evaluate the status of sea turtles in the wild, but that site characteristics and capture technique are bigger drivers. However, sample size for this comparison was relatively small and further investigation of seasonal differences in the metabolome are warranted. Research exploring each of these factors more closely will further contribute towards achieving robust metabolomics analysis of sea turtles across large spatial and temporal scales.
Asunto(s)
Tortugas , Animales , Tortugas/metabolismo , Dieta , MetabolomaRESUMEN
Whole effluent toxicity (WET) testing is commonly used to ensure that wastewater discharges do not pose an unacceptable risk to receiving environments. Traditional WET testing involves exposing animals to (waste)water samples to assess four major ecologically relevant apical endpoints: mortality, growth, development, and reproduction. Recently, with the widespread implementation of the 3Rs to replace, reduce and refine the use of animals in research and testing, there has been a global shift away from in vivo testing towards in vitro alternatives. However, prior to the inclusion of in vitro bioassays in regulatory frameworks, it is critical to establish their ecological relevance and technical suitability. This is part 1 of a two-part review that aims to identify in vitro bioassays that can be used in WET testing and relate them to ecologically relevant endpoints through toxicity pathways, providing the reader with a high-level overview of current capabilities. Part 1 of this review focuses on four apical endpoints currently included in WET testing: mortality, growth, development, and reproduction. For each endpoint, the link between responses at the molecular or cellular level, that can be measured in vitro, and the adverse outcome at the organism level were established through simplified toxicity pathways. Additionally, literature from 2015 to 2020 on the use of in vitro bioassays for water quality assessments was reviewed to identify a list of suitable bioassays for each endpoint. This review will enable the prioritization of relevant endpoints and bioassays for incorporation into WET testing.
Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Animales , Bioensayo , Pruebas de Toxicidad , Aguas Residuales/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Calidad del AguaRESUMEN
Whole effluent toxicity (WET) testing uses whole animal exposures to assess the toxicity of complex mixtures, like wastewater. These assessments typically include four apical endpoints: mortality, growth, development, and reproduction. In the last decade, there has been a shift to alternative methods that align with the 3Rs to replace, reduce, and refine the use of animals in research. In vitro bioassays can provide a cost-effective, high-throughput, ethical alternative to in vivo assays. In addition, they can potentially include additional, more sensitive, environmentally relevant endpoints than traditional toxicity tests. However, the ecological relevance of these endpoints must be established before they are adopted into regulatory frameworks. This is Part 2 of a two-part review that aims to identify in vitro bioassays that are linked to ecologically relevant endpoints that could be included in WET testing. Part 2 of this review focuses on non-apical endpoints that should be incorporated into WET testing. In addition to the four apical endpoints addressed in Part 1, this review identified seven additional toxic outcomes: endocrine disruption, xenobiotic metabolism, carcinogenicity, oxidative stress, inflammation, immunotoxicity and neurotoxicity. For each, the response at the molecular or cellular level measured in vitro was linked to the response at the organism level through a toxicity pathway. Literature from 2015 to 2020 was used to identify suitable bioassays that could be incorporated into WET testing.
Asunto(s)
Aguas Residuales , Xenobióticos , Animales , Bioensayo/métodos , Sistema Endocrino , Pruebas de Toxicidad/métodos , Aguas Residuales/toxicidadRESUMEN
Green turtles foraging in coastal areas are exposed to land-based chemical pollutants that accumulate in the habitats to which they show high site fidelity. However, prior to coastal recruitment, they may be exposed to a different range of chemical threats. The recent development of species-specific in vitro bioassays for marine turtles allows for an effect-based assessment of toxicological endpoints. Blood was collected from green turtles of two life-stages, 'recent recruits' and 'coastal residents', in Hervey Bay and Moreton Bay. Organic contaminants were extracted from blood using the QuEChERS method, and cytotoxicity of the extracts measured in green turtle skin cells. Although not statistically significant, extracts from 'coastal residents' exhibited greater mean toxicity compared to 'recent recruits', possibly indicative of increased chemical accumulation from coastal habitat exposure. The bioassay results also indicated that turtles foraging in Hervey Bay are at greater risk of chemical exposure than those foraging in Moreton Bay.
Asunto(s)
Tortugas , Contaminantes Químicos del Agua , Animales , Bioensayo , Ecosistema , Contaminantes Químicos del Agua/análisisRESUMEN
Coastal ecosystems such as those in the Great Barrier Reef (GBR) lagoon, are exposed to stressors in flood plumes including low light (caused by increased turbidity) and agricultural pesticides. Photosystem II (PSII)-inhibiting herbicides are the most frequently detected pesticides in the GBR lagoon, but it is not clear how their toxicity to phototrophic species depends on light availability. This study investigated the individual and combined effects of PSII-inhibiting herbicide, diuron, and reduced light intensity (as a proxy for increased turbidity) on the marine diatom, Phaeodactylum tricornutum. Effective quantum yield (EQY) and cell density were measured to calculate responses relative to the controls over 72-h, in tests with varying stressor intensities. Individually, diuron concentrations (0.1-3 µg l-1) were not high enough to significantly reduce growth (cell density), but led to decreased EQY; while, low light generally led to increased EQY, but only reduced growth at the lowest tested light intensity (5 µmol photons m-2 s-1) after 48-hours. P. tricornutum was less affected by diuron when combined with low light scenarios, with increased EQY (up to 163% of the controls) that was likely due to increased electron transport per photon, despite lesser available photons at this low light intensity. In contrast, growth was completely inhibited relative to the controls when algae were simultaneously exposed to the highest stressor levels (3 µg l-1 diuron and 5 µmol photons m-2 s-1). This study highlights the importance of measuring more than one biological response variable to capture the combined effects of multiple stressors. Management of water quality stressors should consider combined impacts rather than just the impacts of individual stressors alone. Reducing suspended sediment and diuron concentrations in marine waters can decrease harmful effects and bring synergistic benefits to water quality.
Asunto(s)
Diatomeas , Herbicidas , Microalgas , Contaminantes Químicos del Agua , Diurona/toxicidad , Ecosistema , Herbicidas/análisis , Complejo de Proteína del Fotosistema II , Contaminantes Químicos del Agua/análisisRESUMEN
Coastal ecosystems are exposed to multiple anthropogenic stressors. Effective management actions would be better informed from generalized predictions of the individual, combined and interactive effects of multiple stressors; however, few generalities are shared across different meta-analyses. Using an experimental study, we present an approach for analysing regression-based designs with generalized additive models that allowed us to capture nonlinear effects of exposure duration and stressor intensity and access interactions among stressors. We tested the approach on a globally distributed marine diatom, using 72 h photosynthesis and growth assays to quantify the individual and combined effects of three common water quality stressors; photosystem II-inhibiting herbicide exposure, dissolved inorganic nitrogen (DIN) enrichment and reduced light (due to excess suspended sediment). Exposure to DIN and reduced light generally resulted in additivity, while exposure to diuron and reduced light resulted in additive, antagonistic or synergistic interactions, depending on the stressor intensity, exposure period and biological response. We thus find the context of experimental studies to be a primary driver of interactions. The experimental and modelling approaches used here bridge the gap between two-way designs and regression-based studies, which provides a way forward to identify generalities in multiple stressor interactions.
Asunto(s)
Ecosistema , Herbicidas , Herbicidas/toxicidad , FotosíntesisRESUMEN
Anthropogenic contaminants can have a variety of adverse effects on exposed organisms, including genotoxicity in the form of DNA damage. One of the most commonly used methods to evaluate genotoxicity in exposed organisms is the micronucleus (MN) assay. It provides an efficient assessment of chromosomal impairment due to either chromosomal rupture or mis-segregation during mitosis. However, evaluating chromosomal damage in the MN assay through manual microscopy is a highly time-consuming and somewhat subjective process. High-throughput evaluation with automated image analysis could reduce subjectivity and increase accuracy and throughput. In this study, we optimised and streamlined the HiTMiN assay, adapting the MN assay to a miniaturised, 96-well plate format with reduced steps, and applied it to both primary cells from green turtle fibroblasts (GT12s-p) and a freshwater fish hepatoma cell line (PLHC-1). Image analysis using both commercial (Columbus) and freely available (CellProfiler) software automated the scoring of MN, with improved precision and drastically reduced time compared to manual scoring and other available protocols. The assay was validated through exposure to two inorganic (chromium and cobalt) and one organic (the herbicide metolachlor) compounds, which are genotoxicants of concern in the marine environment. All compounds tested induced MN formation below cytotoxic concentrations. The HiTMiN assay presented here greatly increases the suitability of the MN assay as a quick, affordable, sensitive and accurate assay to measure genotoxicity of environmental samples in different cell lines.
Asunto(s)
Núcleo Celular , Daño del ADN , Animales , Ensayos Analíticos de Alto Rendimiento , Pruebas de Micronúcleos/métodos , MicroscopíaRESUMEN
Port Curtis, a major shipping port, has undergone significant expansion in the last decade, with plans for further development into the future. These activities may result in an increase of contaminant concentrations, threatening local wildlife including sea turtles. This study used a species-specific in vitro bioassay to examine spatial and temporal differences in exposure to, and effects of, organic contaminants in green sea turtles foraging in Port Curtis. Blood was collected from 134 green sea turtles (Chelonia mydas) from five locations in the port over four years. Organic contaminants were extracted from blood, and the cytotoxicity of the extracts to primary green sea turtle cells was assessed. Results indicated spatially similar chemical contamination throughout Port Curtis, at levels significant to sea turtle health, and with signs that chemical contamination may be increasing over time. These results can provide valuable information on the health of green turtles as further development occurs.
Asunto(s)
Tortugas , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidadRESUMEN
Threatened or endangered reptiles, such as sea turtles, are generally understudied within the field of wildlife toxicology, with even fewer studies on how contaminants affect threatened species reproduction. This paper aimed to better inform threatened species conservation by systematically and quantitatively reviewing available research on the reproductive toxicology of all reptiles, threatened and non-threatened. This review found 178 studies that matched our search criteria. These papers were categorized into location conducted, taxa studied, species studied, effects found, and chemicals investigated. The most studied taxa were turtles (n = 87 studies, 49%), alligators/crocodiles (n = 54, 30%), and lizards (n = 37, 21%). Maternal transfer, sex steroid alterations, sex reversal, altered sexual development, developmental abnormalities, and egg contamination were the most common effects found across all reptile taxa, providing guidance for avenues of research into threatened species. Maternal transfer of contaminants was found across all taxa, and taking into account the foraging behavior of sea turtles, could help elucidate differences in maternal transfer seen at nesting beaches. Sex steroid alterations were a common effect found with contaminant exposure, indicating the potential to use sex steroids as biomarkers along with traditional biomarkers such as vitellogenin. Sex reversal through chemical exposure was commonly found among species that exhibit temperature dependent sex determination, indicating the potential for both environmental pollution and climate change to disrupt population dynamics of many reptile species, including sea turtles. Few studies used in vitro, DNA, or molecular methodologies, indicating the need for more research using high-throughput, non-invasive, and cost-effective tools for threatened species research. The prevalence of developmental abnormalities and altered sexual development and function indicates the need to further study how anthropogenic pollutants affect reproductive output in threatened reptiles.
Asunto(s)
Caimanes y Cocodrilos , Tortugas , Animales , Especies en Peligro de Extinción , Reproducción , TemperaturaRESUMEN
Sea turtles, dolphins and dugongs can be exposed to large mixtures of contaminants due to the proximity of foraging locations to anthropogenic inputs. Differences in accumulation and effect result in differences of chemical risk to these species. However, little is known about the effect of contaminants in marine wildlife. Cell-based, or in vitro, exposure experiments offer an ethical alternative to investigate the effect of contaminants in wildlife. Data from in vitro studies can then be placed in an environmental context, by using screening risk assessments, comparing effect data with accumulation data from the literature, to identify risk to populations of marine wildlife. Cytotoxicity of Cr6+, Cd2+, Hg2+, 4,4'-DDE, and PFNA were investigated in primary skin fibroblasts of green turtles, loggerhead turtles, hawksbill turtles, dugongs, Burrunan dolphins, and common bottlenose dolphins. The general order of toxicity for all species was Hg2+> Cr6+ > Cd2+> 4,4'-DDE > PFNA, and significant differences in cytotoxicity were found between species for Cr6+, Cd2+ and PFNA. For Cd2+, in particular, cells from turtle species were less sensitive than mammalian species, and dugong cells were by far the most sensitive. The results from the cytotoxicity assay were then used in combination with published data on tissue contaminant concentrations to calculate risk quotients for identifying populations of each species most at risk from these chemicals. Cr, Cd and Hg were identified as posing risk in all six species. Dugongs were particularly at risk from Cd accumulation and dolphin species were particularly at risk from Hg accumulation. These results demonstrate the importance of using species-specific effect and accumulation data for developing chemical risk assessments and can be used to inform managers of priority contaminants, species, or populations. Development of additional in vitro endpoints, and improving links between in vitro and in vivo effects, would further improve this approach to understanding chemical risk in marine megafauna.
Asunto(s)
Delfines , Tortugas , Contaminantes Químicos del Agua , Animales , Medición de Riesgo , Especificidad de la Especie , Contaminantes Químicos del Agua/toxicidadRESUMEN
Environmental contaminants pose serious health threats to marine megafauna species, yet methods defining exposure threshold limits are lacking. Here, a three-pillar chemical risk assessment framework is presented based on (1) species- and chemical-specific lifetime bioaccumulation modelling, (2) non-destructive in vitro and in vivo toxicity threshold assessment, and (3) chemical risk quantification. We used the effects of cadmium (Cd) in green sea turtles (Chelonia mydas) as a proof of concept to evaluate the quantitative mechanistic modelling approach. A physiologically-based kinetic (PBK) model simulated Cd tissue concentrations (liver, kidney, muscle, fat, brain, scute, and 'rest of the body') in C.mydas. The validated PBK model then translated species-specific in vitro results to in vivo effects. The results showed that the resilience of C.mydas towards Cd kidney toxicity is age-dependent and differs with changing physiology and feeding ecology. Using the model in reverse mode, a steady-state exposure threshold of 0.1 µg/g dry weight Cd in forage was derived and compared to real-world exposure scenarios. Three out of the four globally distinct C.mydas populations assessed are exposed to Cd levels above this threshold limit. This approach can be adapted to other marine species and chemicals to prioritize measures for managing potentially harmful chemical exposures.
Asunto(s)
Tortugas , Contaminantes Químicos del Agua , Animales , Cadmio/toxicidad , Riñón/química , Hígado/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidadRESUMEN
The aim of this study is to produce G-banded karyotypes of three dolphin species, Tursiops truncatus Montagu, 1821, Tursiops australisCharlton-Robb et al., 2011, and Grampus griseus Cuvier, 1812, and to determine if any differences between the species can be observed. Monolayer skin cultures were established and processed for chromosome study by trypsin banding. The results indicate that the three species here investigated have the same diploid number (2n = 44) and very similar gross chromosome morphology, however G-banding allows distinction between each species. Chromosome 1 in G. griseus is significantly different from the other 2 species, and chromosome 2 in T. australis is subtly different from the other 2 species. This result is of potential significance in taxonomic studies, and can provide an unequivocal answer in the assessment of suspected hybrids between these species.
RESUMEN
Sea turtle populations foraging in coastal areas adjacent to human activity can be exposed to numerous chemical contaminants for long periods of time. For trace elements, well-developed, sensitive and inexpensive analytical techniques remain the most effective method for assessing exposure in sea turtles. However, there are many thousands more organic contaminants present in sea turtles, often at low levels as complex mixtures. Recently developed species-specific in vitro bioassays provide an effective means to identify the presence, and effect of, organic chemicals in sea turtles. This study used a combination of chemical analysis and effects-based bioassays to provide complementary information on chemical exposure and effects for three green turtle foraging populations (Chelonia mydas) in southern Queensland, Australia. Blood was collected from foraging sub-adult green turtles captured in Moreton Bay, Hervey Bay, and Port Curtis. Twenty-six trace elements were measured in whole blood using ICP-MS. Organic contaminants in turtle blood were extracted via QuEChERS and applied to primary green turtle skin fibroblast cell in vitro assays for two toxicity endpoints; cytotoxicity and oxidative stress. The trace element analysis and bioassay results indicated site-specific differences between foraging populations. In particular, turtles from Moreton Bay, a heavily populated coastal embayment, had pronounced cytotoxicity and oxidative stress from organic blood extracts, and elevated concentrations of Cs, Ag, and Zn relative to the other sites. Incorporating traditional chemical analysis with novel effects-based methods can provide a comprehensive assessment of chemical risk in sea turtle populations, contributing to the conservation and management of these threatened species.