Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Brain Sci ; 14(5)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38790489

RESUMEN

Neuroeconomics merges neuroscience, economics, and psychology to investigate the neural basis of decision making. Decision making involves assessing outcomes with subjective value, shaped by emotions and experiences, which are crucial in economic decisions. Functional MRI (fMRI) reveals key areas of the brain, including the ventro-medial prefrontal cortex, that are involved in subjective value representation. Collaborative interdisciplinary efforts are essential for advancing the field of neuroeconomics, with implications for clinical interventions and policy design. This review explores subjective value in neuroeconomics, highlighting brain regions identified through fMRI studies.

2.
Mol Psychiatry ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693319

RESUMEN

Reduced processing speed is a core deficit in major depressive disorder (MDD) and has been linked to altered structural brain network connectivity. Ample evidence highlights the involvement of genetic-immunological processes in MDD and specific depressive symptoms. Here, we extended these findings by examining associations between polygenic scores for tumor necrosis factor-α blood levels (TNF-α PGS), structural brain connectivity, and processing speed in a large sample of MDD patients. Processing speed performance of n = 284 acutely depressed, n = 177 partially and n = 198 fully remitted patients, and n = 743 healthy controls (HC) was estimated based on five neuropsychological tests. Network-based statistic was used to identify a brain network associated with processing speed. We employed general linear models to examine the association between TNF-α PGS and processing speed. We investigated whether network connectivity mediates the association between TNF-α PGS and processing speed. We identified a structural network positively associated with processing speed in the whole sample. We observed a significant negative association between TNF-α PGS and processing speed in acutely depressed patients, whereas no association was found in remitted patients and HC. The mediation analysis revealed that brain connectivity partially mediated the association between TNF-α PGS and processing speed in acute MDD. The present study provides evidence that TNF-α PGS is associated with decreased processing speed exclusively in patients with acute depression. This association was partially mediated by structural brain connectivity. Using multimodal data, the current findings advance our understanding of cognitive dysfunction in MDD and highlight the involvement of genetic-immunological processes in its pathomechanisms.

3.
4.
Biol Psychiatry ; 95(7): 629-638, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37207935

RESUMEN

BACKGROUND: The psychopathological syndrome of formal thought disorder (FTD) is not only present in schizophrenia (SZ), but also highly prevalent in major depressive disorder and bipolar disorder. It remains unknown how alterations in the structural white matter connectome of the brain correlate with psychopathological FTD dimensions across affective and psychotic disorders. METHODS: Using FTD items of the Scale for the Assessment of Positive Symptoms and Scale for the Assessment of Negative Symptoms, we performed exploratory and confirmatory factor analyses in 864 patients with major depressive disorder (n= 689), bipolar disorder (n = 108), or SZ (n = 67) to identify psychopathological FTD dimensions. We used T1- and diffusion-weighted magnetic resonance imaging to reconstruct the structural connectome of the brain. To investigate the association of FTD subdimensions and global structural connectome measures, we employed linear regression models. We used network-based statistic to identify subnetworks of white matter fiber tracts associated with FTD symptomatology. RESULTS: Three psychopathological FTD dimensions were delineated, i.e., disorganization, emptiness, and incoherence. Disorganization and incoherence were associated with global dysconnectivity. Network-based statistics identified subnetworks associated with the FTD dimensions disorganization and emptiness but not with the FTD dimension incoherence. Post hoc analyses on subnetworks did not reveal diagnosis × FTD dimension interaction effects. Results remained stable after correcting for medication and disease severity. Confirmatory analyses showed a substantial overlap of nodes from both subnetworks with cortical brain regions previously associated with FTD in SZ. CONCLUSIONS: We demonstrated white matter subnetwork dysconnectivity in major depressive disorder, bipolar disorder, and SZ associated with FTD dimensions that predominantly comprise brain regions implicated in speech. Results open an avenue for transdiagnostic, psychopathology-informed, dimensional studies in pathogenetic research.


Asunto(s)
Trastorno Depresivo Mayor , Demencia Frontotemporal , Trastornos Psicóticos , Esquizofrenia , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/complicaciones , Demencia Frontotemporal/complicaciones , Trastornos Psicóticos/psicología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Esquizofrenia/patología , Imagen por Resonancia Magnética
5.
bioRxiv ; 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37808808

RESUMEN

A broad range of neuropsychiatric disorders are associated with alterations in macroscale brain circuitry and connectivity. Identifying consistent brain patterns underlying these disorders by means of structural and functional MRI has proven challenging, partly due to the vast number of tests required to examine the entire brain, which can lead to an increase in missed findings. In this study, we propose polyconnectomic score (PCS) as a metric designed to quantify the presence of disease-related brain connectivity signatures in connectomes. PCS summarizes evidence of brain patterns related to a phenotype across the entire landscape of brain connectivity into a subject-level score. We evaluated PCS across four brain disorders (autism spectrum disorder, schizophrenia, attention deficit hyperactivity disorder, and Alzheimer's disease) and 14 studies encompassing ~35,000 individuals. Our findings consistently show that patients exhibit significantly higher PCS compared to controls, with effect sizes that go beyond other single MRI metrics ([min, max]: Cohen's d = [0.30, 0.87], AUC = [0.58, 0.73]). We further demonstrate that PCS serves as a valuable tool for stratifying individuals, for example within the psychosis continuum, distinguishing patients with schizophrenia from their first-degree relatives (d = 0.42, p = 4 × 10-3, FDR-corrected), and first-degree relatives from healthy controls (d = 0.34, p = 0.034, FDR-corrected). We also show that PCS is useful to uncover associations between brain connectivity patterns related to neuropsychiatric disorders and mental health, psychosocial factors, and body measurements.

6.
Mol Psychiatry ; 28(11): 4613-4621, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37714950

RESUMEN

Childhood maltreatment (CM) has been associated with changes in structural brain connectivity even in the absence of mental illness. Social support, an important protective factor in the presence of childhood maltreatment, has been positively linked to white matter integrity. However, the shared effects of current social support and CM and their association with structural connectivity remain to be investigated. They might shed new light on the neurobiological basis of the protective mechanism of social support. Using connectome-based predictive modeling (CPM), we analyzed structural connectomes of N = 904 healthy adults derived from diffusion-weighted imaging. CPM predicts phenotypes from structural connectivity through a cross-validation scheme. Distinct and shared networks of white matter tracts predicting childhood trauma questionnaire scores and the social support questionnaire were identified. Additional analyses were applied to assess the stability of the results. CM and social support were predicted significantly from structural connectome data (all rs ≥ 0.119, all ps ≤ 0.016). Edges predicting CM and social support were inversely correlated, i.e., positively correlated with CM and negatively with social support, and vice versa, with a focus on frontal and temporal regions including the insula and superior temporal lobe. CPM reveals the predictive value of the structural connectome for CM and current social support. Both constructs are inversely associated with connectivity strength in several brain tracts. While this underlines the interconnectedness of these experiences, it suggests social support acts as a protective factor following adverse childhood experiences, compensating for brain network alterations. Future longitudinal studies should focus on putative moderating mechanisms buffering these adverse experiences.


Asunto(s)
Maltrato a los Niños , Conectoma , Pruebas Psicológicas , Autoinforme , Sustancia Blanca , Adulto , Humanos , Niño , Conectoma/métodos , Imagen por Resonancia Magnética , Encéfalo
7.
Brain Commun ; 5(4): fcad210, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554956

RESUMEN

Insomnia poses a high risk for depression. Brain mechanisms of sleep and mood improvement following cognitive behavioural therapy for insomnia remain elusive. This longitudinal study evaluated whether (i) individual differences in baseline brain white matter microstructure predict improvements and (ii) intervention affects brain white matter microstructure. People meeting the Diagnostic and Statistical Manual of Mental Disorders-5 criteria for Insomnia Disorder (n = 117) participated in a randomized controlled trial comparing 6 weeks of no treatment with therapist-guided digital cognitive behavioural therapy for insomnia, circadian rhythm support or their combination (cognitive behavioural therapy for insomnia + circadian rhythm support). Insomnia Severity Index and Inventory of Depressive Symptomatology-Self Report were assessed at baseline and followed up at Weeks 7, 26, 39 and 52. Diffusion-weighted magnetic resonance images were acquired at baseline and Week 7. Skeletonized white matter tracts, fractional anisotropy and mean diffusivity were quantified both tract-wise and voxel-wise using tract-based spatial statistics. Analyses used linear and mixed effect models while correcting for multiple testing using false discovery rate and Bonferroni for correlated endpoint measures. Our results show the following: (i) tract-wise lower fractional anisotropy in the left retrolenticular part of the internal capsule at baseline predicted both worse progression of depressive symptoms in untreated participants and more improvement in treated participants (fractional anisotropy × any intervention, PFDR = 0.053, Pcorr = 0.045). (ii) Only the cognitive behavioural therapy for insomnia + circadian rhythm support intervention induced a trend-level mean diffusivity decrease in the right superior corona radiata (PFDR = 0.128, Pcorr = 0.108), and individuals with a stronger mean diffusivity decrease showed a stronger alleviation of insomnia (R = 0.20, P = 0.035). In summary, individual differences in risk and treatment-supported resilience of depression involve white matter microstructure. Future studies could target the role of the left retrolenticular part of the internal capsule and right superior corona radiata and the brain areas they connect.

8.
Artículo en Inglés | MEDLINE | ID: mdl-37286292

RESUMEN

BACKGROUND: Psychiatric conditions show overlap in their symptoms, genetics, and involvement in brain areas and circuits. Structural alterations in the brain have been found to run in parallel with expression profiles of risk genes at the level of the brain transcriptome, which may point toward a potential transdiagnostic vulnerability of the brain to disease processes. METHODS: We characterized the transcriptomic vulnerability of the cortex across 4 major psychiatric disorders based on collated data from patients with psychiatric disorders (n = 390) and matched control participants (n = 293). We compared normative expression profiles of risk genes linked to schizophrenia, bipolar disorder, autism spectrum disorder, and major depressive disorder to examine cross-disorder overlap in spatial expression profiles across the cortex and their concordance with a magnetic resonance imaging-derived cross-disorder profile of structural brain alterations. RESULTS: We showed high expression of psychiatric risk genes converging on multimodal cortical regions of the limbic, ventral attention, and default mode networks versus primary somatosensory networks. Risk genes were found to be enriched among genes associated with the magnetic resonance imaging cross-disorder profile, suggestive of a common link between brain anatomy and the transcriptome in psychiatric conditions. Characterization of this cross-disorder structural alteration map further shows enrichment for gene markers of astrocytes, microglia, and supragranular cortical layers. CONCLUSIONS: Our findings suggest that normative expression profiles of disorder risk genes confer a shared and spatially patterned vulnerability of the cortex across multiple psychiatric conditions. Transdiagnostic overlap in transcriptomic risk suggests a common pathway to brain dysfunction across psychiatric disorders.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Bipolar , Trastorno Depresivo Mayor , Esquizofrenia , Humanos , Trastorno Depresivo Mayor/genética , Trastorno Bipolar/genética , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética , Esquizofrenia/metabolismo , Transcriptoma , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/genética , Encéfalo/patología , Neuroimagen
9.
Commun Biol ; 6(1): 636, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37311857

RESUMEN

Fossil endocasts record features of brains from the past: size, shape, vasculature, and gyrification. These data, alongside experimental and comparative evidence, are needed to resolve questions about brain energetics, cognitive specializations, and developmental plasticity. Through the application of interdisciplinary techniques to the fossil record, paleoneurology has been leading major innovations. Neuroimaging is shedding light on fossil brain organization and behaviors. Inferences about the development and physiology of the brains of extinct species can be experimentally investigated through brain organoids and transgenic models based on ancient DNA. Phylogenetic comparative methods integrate data across species and associate genotypes to phenotypes, and brains to behaviors. Meanwhile, fossil and archeological discoveries continuously contribute new knowledge. Through cooperation, the scientific community can accelerate knowledge acquisition. Sharing digitized museum collections improves the availability of rare fossils and artifacts. Comparative neuroanatomical data are available through online databases, along with tools for their measurement and analysis. In the context of these advances, the paleoneurological record provides ample opportunity for future research. Biomedical and ecological sciences can benefit from paleoneurology's approach to understanding the mind as well as its novel research pipelines that establish connections between neuroanatomy, genes and behavior.


Asunto(s)
Encéfalo , Fósiles , Filogenia , Arqueología , Artefactos
10.
Nat Commun ; 14(1): 2850, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37202416

RESUMEN

The wiring of the brain connects micro-architecturally diverse neuronal populations, but the conventional graph model, which encodes macroscale brain connectivity as a network of nodes and edges, abstracts away the rich biological detail of each regional node. Here, we annotate connectomes with multiple biological attributes and formally study assortative mixing in annotated connectomes. Namely, we quantify the tendency for regions to be connected based on the similarity of their micro-architectural attributes. We perform all experiments using four cortico-cortical connectome datasets from three different species, and consider a range of molecular, cellular, and laminar annotations. We show that mixing between micro-architecturally diverse neuronal populations is supported by long-distance connections and find that the arrangement of connections with respect to biological annotations is associated to patterns of regional functional specialization. By bridging scales of cortical organization, from microscale attributes to macroscale connectivity, this work lays the foundation for next-generation annotated connectomics.


Asunto(s)
Conectoma , Conectoma/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Neuronas/fisiología , Vías Nerviosas/fisiología
11.
Proc Natl Acad Sci U S A ; 120(22): e2218565120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216540

RESUMEN

A long-standing topic of interest in human neurosciences is the understanding of the neurobiology underlying human cognition. Less commonly considered is to what extent such systems may be shared with other species. We examined individual variation in brain connectivity in the context of cognitive abilities in chimpanzees (n = 45) and humans in search of a conserved link between cognition and brain connectivity across the two species. Cognitive scores were assessed on a variety of behavioral tasks using chimpanzee- and human-specific cognitive test batteries, measuring aspects of cognition related to relational reasoning, processing speed, and problem solving in both species. We show that chimpanzees scoring higher on such cognitive skills display relatively strong connectivity among brain networks also associated with comparable cognitive abilities in the human group. We also identified divergence in brain networks that serve specialized functions across humans and chimpanzees, such as stronger language connectivity in humans and relatively more prominent connectivity between regions related to spatial working memory in chimpanzees. Our findings suggest that core neural systems of cognition may have evolved before the divergence of chimpanzees and humans, along with potential differential investments in other brain networks relating to specific functional specializations between the two species.


Asunto(s)
Conectoma , Pan troglodytes , Animales , Humanos , Neurobiología , Encéfalo , Cognición , Imagen por Resonancia Magnética
12.
Neuroimage ; 273: 120108, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37059156

RESUMEN

We describe a Connectivity Analysis TOolbox (CATO) for the reconstruction of structural and functional brain connectivity based on diffusion weighted imaging and resting-state functional MRI data. CATO is a multimodal software package that enables researchers to run end-to-end reconstructions from MRI data to structural and functional connectome maps, customize their analyses and utilize various software packages to preprocess data. Structural and functional connectome maps can be reconstructed with respect to user-defined (sub)cortical atlases providing aligned connectivity matrices for integrative multimodal analyses. We outline the implementation and usage of the structural and functional processing pipelines in CATO. Performance was calibrated with respect to simulated diffusion weighted imaging data from the ITC2015 challenge and test-retest diffusion weighted imaging data and resting-state functional MRI data from the Human Connectome Project. CATO is open-source software distributed under the MIT License and available as a MATLAB toolbox and as a stand-alone application at www.dutchconnectomelab.nl/CATO.


Asunto(s)
Encéfalo , Conectoma , Humanos , Encéfalo/diagnóstico por imagen , Programas Informáticos , Imagen por Resonancia Magnética/métodos , Conectoma/métodos
13.
PLoS Comput Biol ; 19(3): e1010958, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36877733

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS) is a promising alternative therapy for treatment-resistant depression, although its limited remission rate indicates room for improvement. As depression is a phenomenological construction, the biological heterogeneity within this syndrome needs to be considered to improve the existing therapies. Whole-brain modeling provides an integrative multi-modal framework for capturing disease heterogeneity in a holistic manner. Computational modelling combined with probabilistic nonparametric fitting was applied to the resting-state fMRI data from 42 patients (21 women), to parametrize baseline brain dynamics in depression. All patients were randomly assigned to two treatment groups, namely active (i.e., rTMS, n = 22) or sham (n = 20). The active treatment group received rTMS treatment with an accelerated intermittent theta burst protocol over the dorsomedial prefrontal cortex. The sham treatment group underwent the identical procedure but with the magnetically shielded side of the coil. We stratified the depression sample into distinct covert subtypes based on their baseline attractor dynamics captured by different model parameters. Notably, the two detected depression subtypes exhibited different phenotypic behaviors at baseline. Our stratification could predict the diverse response to the active treatment that could not be explained by the sham treatment. Critically, we further found that one group exhibited more distinct improvement in certain affective and negative symptoms. The subgroup of patients with higher responsiveness to treatment exhibited blunted frequency dynamics for intrinsic activity at baseline, as indexed by lower global metastability and synchrony. Our findings suggested that whole-brain modeling of intrinsic dynamics may constitute a determinant for stratifying patients into treatment groups and bringing us closer towards precision medicine.


Asunto(s)
Trastorno Depresivo Mayor , Estimulación Magnética Transcraneal , Humanos , Femenino , Estimulación Magnética Transcraneal/métodos , Resultado del Tratamiento , Trastorno Depresivo Mayor/psicología , Encéfalo/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiología , Método Doble Ciego
14.
eNeuro ; 10(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36882310

RESUMEN

Functional connectivity within resting-state networks (RSN-FC) is vital for cognitive functioning. RSN-FC is heritable and partially translates to the anatomic architecture of white matter, but the genetic component of structural connections of RSNs (RSN-SC) and their potential genetic overlap with RSN-FC remain unknown. Here, we perform genome-wide association studies (N discovery = 24,336; N replication = 3412) and annotation on RSN-SC and RSN-FC. We identify genes for visual network-SC that are involved in axon guidance and synaptic functioning. Genetic variation in RSN-FC impacts biological processes relevant to brain disorders that previously were only phenotypically associated with RSN-FC alterations. Correlations of the genetic components of RSNs are mostly observed within the functional domain, whereas less overlap is observed within the structural domain and between the functional and structural domains. This study advances the understanding of the complex functional organization of the brain and its structural underpinnings from a genetics viewpoint.


Asunto(s)
Mapeo Encefálico , Estudio de Asociación del Genoma Completo , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Cognición , Red Nerviosa/diagnóstico por imagen
15.
Biol Psychiatry ; 94(2): 174-183, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-36803976

RESUMEN

BACKGROUND: Schizophrenia (SCZ) and bipolar disorder (BD) are severe psychiatric conditions that can involve symptoms of psychosis and cognitive dysfunction. The 2 conditions share symptomatology and genetic etiology and are regularly hypothesized to share underlying neuropathology. Here, we examined how genetic liability to SCZ and BD shapes normative variations in brain connectivity. METHODS: We examined the effect of the combined genetic liability for SCZ and BD on brain connectivity from two perspectives. First, we examined the association between polygenic scores for SCZ and BD for 19,778 healthy subjects from the UK Biobank and individual variation in brain structural connectivity reconstructed by means of diffusion weighted imaging data. Second, we conducted genome-wide association studies using genotypic and imaging data from the UK Biobank, taking SCZ-/BD-involved brain circuits as phenotypes of interest. RESULTS: Our findings showed brain circuits of superior parietal and posterior cingulate regions to be associated with polygenic liability for SCZ and BD, circuitry that overlaps with brain networks involved in disease conditions (r = 0.239, p < .001). Genome-wide association study analysis showed 9 significant genomic loci associated with SCZ-involved circuits and 14 loci associated with BD-involved circuits. Genes related to SCZ-/BD-involved circuits were significantly enriched in gene sets previously reported in genome-wide association studies for SCZ and BD. CONCLUSIONS: Our findings suggest that polygenic liability of SCZ and BD is associated with normative individual variation in brain circuitry.


Asunto(s)
Trastorno Bipolar , Conectoma , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética , Trastorno Bipolar/genética , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad
16.
Trends Cogn Sci ; 27(3): 282-301, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36725422

RESUMEN

Network neuroscience has emerged as a leading method to study brain connectivity. The success of these investigations is dependent not only on approaches to accurately map connectivity but also on the ability to detect real effects in the data - that is, statistical power. We review the state of statistical power in the field and discuss sample size, effect size, measurement error, and network topology as key factors that influence the power of brain connectivity investigations. We use the term 'differential power' to describe how power can vary between nodes, edges, and graph metrics, leaving traces in both positive and negative connectome findings. We conclude with strategies for working with, rather than around, power in connectivity studies.


Asunto(s)
Encéfalo , Conectoma , Humanos , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Red Nerviosa
17.
Psychol Med ; : 1-12, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36752136

RESUMEN

BACKGROUND: Cognitive dysfunction and brain structural connectivity alterations have been observed in major depressive disorder (MDD). However, little is known about their interrelation. The present study follows a network approach to evaluate alterations in cognition-related brain structural networks. METHODS: Cognitive performance of n = 805 healthy and n = 679 acutely depressed or remitted individuals was assessed using 14 cognitive tests aggregated into cognitive factors. The structural connectome was reconstructed from structural and diffusion-weighted magnetic resonance imaging. Associations between global connectivity strength and cognitive factors were established using linear regressions. Network-based statistics were applied to identify subnetworks of connections underlying these global-level associations. In exploratory analyses, effects of depression were assessed by evaluating remission status-related group differences in subnetwork-specific connectivity. Partial correlations were employed to directly test the complete triad of cognitive factors, depressive symptom severity, and subnetwork-specific connectivity strength. RESULTS: All cognitive factors were associated with global connectivity strength. For each cognitive factor, network-based statistics identified a subnetwork of connections, revealing, for example, a subnetwork positively associated with processing speed. Within that subnetwork, acutely depressed patients showed significantly reduced connectivity strength compared to healthy controls. Moreover, connectivity strength in that subnetwork was associated to current depressive symptom severity independent of the previous disease course. CONCLUSIONS: Our study is the first to identify cognition-related structural brain networks in MDD patients, thereby revealing associations between cognitive deficits, depressive symptoms, and reduced structural connectivity. This supports the hypothesis that structural connectome alterations may mediate the association of cognitive deficits and depression severity.

18.
Mol Psychiatry ; 28(3): 1057-1063, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36639510

RESUMEN

Many therapeutic interventions in psychiatry can be viewed as attempts to influence the brain's large-scale, dynamic network state transitions. Building on connectome-based graph analysis and control theory, Network Control Theory is emerging as a powerful tool to quantify network controllability-i.e., the influence of one brain region over others regarding dynamic network state transitions. If and how network controllability is related to mental health remains elusive. Here, from Diffusion Tensor Imaging data, we inferred structural connectivity and inferred calculated network controllability parameters to investigate their association with genetic and familial risk in patients diagnosed with major depressive disorder (MDD, n = 692) and healthy controls (n = 820). First, we establish that controllability measures differ between healthy controls and MDD patients while not varying with current symptom severity or remission status. Second, we show that controllability in MDD patients is associated with polygenic scores for MDD and psychiatric cross-disorder risk. Finally, we provide evidence that controllability varies with familial risk of MDD and bipolar disorder as well as with body mass index. In summary, we show that network controllability is related to genetic, individual, and familial risk in MDD patients. We discuss how these insights into individual variation of network controllability may inform mechanistic models of treatment response prediction and personalized intervention-design in mental health.


Asunto(s)
Conectoma , Trastorno Depresivo Mayor , Humanos , Imagen de Difusión Tensora , Predisposición Genética a la Enfermedad , Imagen por Resonancia Magnética/métodos , Encéfalo
19.
Alzheimers Res Ther ; 14(1): 199, 2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36581943

RESUMEN

BACKGROUND: Alzheimer's disease (AD) and frontotemporal dementia (FTD) show network dysfunctions linked with cognitive deficits. Within this framework, network abnormalities between AD and FTD show both convergent and divergent patterns. However, these functional patterns are far from being established and their relevance to cognitive processes remains to be elucidated. METHODS: We investigated the relationship between cognition and functional connectivity of major cognitive networks in these diseases. Twenty-three bvFTD (age: 71±10), 22 AD (age: 72±6), and 20 controls (age: 72±6) underwent cognitive evaluation and resting-state functional MRI. Principal component analysis was used to describe cognitive variance across participants. Brain network connectivity was estimated with connectome analysis. Connectivity matrices were created assessing correlations between parcels within each functional network. The following cognitive networks were considered: default mode (DMN), dorsal attention (DAN), ventral attention (VAN), and frontoparietal (FPN) networks. The relationship between cognition and connectivity was assessed using a bootstrapping correlation and interaction analyses. RESULTS: Three principal cognitive components explained more than 80% of the cognitive variance: the first component (cogPC1) loaded on memory, the second component (cogPC2) loaded on emotion and language, and the third component (cogPC3) loaded on the visuo-spatial and attentional domains. Compared to HC, AD and bvFTD showed impairment in all cogPCs (p<0.002), and bvFTD scored worse than AD in cogPC2 (p=0.031). At the network level, the DMN showed a significant association in the whole group with cogPC1 and cogPC2 and the VAN with cogPC2. By contrast, DAN and FPN showed a divergent pattern between diagnosis and connectivity for cogPC2. We confirmed these results by means of a multivariate analysis (canonical correlation). CONCLUSIONS: A low-dimensional representation can account for a large variance in cognitive scores in the continuum from normal to pathological aging. Moreover, cognitive components showed both convergent and divergent patterns with connectivity across AD and bvFTD. The convergent pattern was observed across the networks primarily involved in these diseases (i.e., the DMN and VAN), while a divergent FC-cognitive pattern was mainly observed between attention/executive networks and the language/emotion cognitive component, suggesting the co-existence of compensatory and detrimental mechanisms underlying these components.


Asunto(s)
Enfermedad de Alzheimer , Conectoma , Demencia Frontotemporal , Humanos , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/diagnóstico por imagen , Demencia Frontotemporal/complicaciones , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/patología , Imagen por Resonancia Magnética/métodos , Encéfalo/patología , Mapeo Encefálico , Cognición
20.
J Neurosci ; 42(48): 8948-8959, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36376077

RESUMEN

Stress following preterm birth can disrupt the emerging foundation of the neonatal brain. The current study examined how structural brain development is affected by a stressful early environment and whether changes in topological architecture at term-equivalent age could explain the increased vulnerability for behavioral symptoms during early childhood. Longitudinal changes in structural brain connectivity were quantified using diffusion-weighted imaging (DWI) and tractography in preterm born infants (gestational age <28 weeks), imaged at 30 and/or 40 weeks of gestation (N = 145, 43.5% female). A global index of postnatal stress was determined based on the number of invasive procedures during hospitalization (e.g., heel lance). Higher stress levels impaired structural connectivity growth in a subnetwork of 48 connections (p = 0.003), including the amygdala, insula, hippocampus, and posterior cingulate cortex. Findings were replicated in an independent validation sample (N = 123, 39.8% female, n = 91 with follow-up). Classifying infants into vulnerable and resilient based on having more or less internalizing symptoms at two to five years of age (n = 71) revealed lower connectivity in the hippocampus and amygdala for vulnerable relative to resilient infants (p < 0.001). Our findings suggest that higher stress exposure during hospital admission is associated with slower growth of structural connectivity. The preservation of global connectivity of the amygdala and hippocampus might reflect a stress-buffering or resilience-enhancing factor against a stressful early environment and early-childhood internalizing symptoms.SIGNIFICANCE STATEMENT The preterm brain is exposed to various external stimuli following birth. The effects of early chronic stress on neonatal brain networks and the remarkable degree of resilience are not well understood. The current study aims to provide an increased understanding of the impact of postnatal stress on third-trimester brain development and describe the topological architecture of a resilient brain. We observed a sparser neonatal brain network in infants exposed to higher postnatal stress. Limbic regulatory regions, including the hippocampus and amygdala, may play a key role as crucial convergence sites of protective factors. Understanding how stress-induced alterations in early brain development might lead to brain (re)organization may provide essential insights into resilient functioning.


Asunto(s)
Conectoma , Nacimiento Prematuro , Lactante , Recién Nacido , Humanos , Preescolar , Femenino , Masculino , Recien Nacido Prematuro , Encéfalo/diagnóstico por imagen , Edad Gestacional , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA