Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 7(3): e32857, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22412934

RESUMEN

Severe acute respiratory syndrome (SARS) is a zoonotic disease caused by SARS-related coronavirus (SARS-CoV) that emerged in 2002 to become a global health concern. Although the original outbreak was controlled by classical public health measures, there is a real risk that another SARS-CoV could re-emerge from its natural reservoir, either in its original form or as a more virulent or pathogenic strain; in which case, the virus would be difficult to control in the absence of any effective antiviral drugs or vaccines. Using the well-studied SARS-CoV isolate HKU-39849, we developed a vaccinia virus-based SARS-CoV reverse genetic system that is both robust and biosafe. The SARS-CoV genome was cloned in separate vaccinia virus vectors, (vSARS-CoV-5prime and vSARS-CoV-3prime) as two cDNAs that were subsequently ligated to create a genome-length SARS-CoV cDNA template for in vitro transcription of SARS-CoV infectious RNA transcripts. Transfection of the RNA transcripts into permissive cells led to the recovery of infectious virus (recSARS-CoV). Characterization of the plaques produced by recSARS-CoV showed that they were similar in size to the parental SARS-CoV isolate HKU-39849 but smaller than the SARS-CoV isolate Frankfurt-1. Comparative analysis of replication kinetics showed that the kinetics of recSARS-CoV replication are similar to those of SARS-CoV Frankfurt-1, although the titers of virus released into the culture supernatant are approximately 10-fold less. The reverse genetic system was finally used to generate a recSARS-CoV reporter virus expressing Renilla luciferase in order to facilitate the analysis of SARS-CoV gene expression in human dendritic cells (hDCs). In parallel, a Renilla luciferase gene was also inserted into the genome of human coronavirus 229E (HCoV-229E). Using this approach, we demonstrate that, in contrast to HCoV-229E, SARS-CoV is not able to mediate efficient heterologous gene expression in hDCs.


Asunto(s)
Virus Reordenados/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Virus Vaccinia/genética , Animales , Línea Celular , Chlorocebus aethiops , Clonación Molecular , ADN Complementario , Células Dendríticas/virología , Regulación Viral de la Expresión Génica , Orden Génico , Genoma Viral , Humanos , Datos de Secuencia Molecular , Recombinación Genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/crecimiento & desarrollo , Análisis de Secuencia de ADN , Ensayo de Placa Viral , Replicación Viral
2.
Nucleic Acids Res ; 40(4): 1737-47, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22039154

RESUMEN

Uniquely among RNA viruses, replication of the ~30-kb SARS-coronavirus genome is believed to involve two RNA-dependent RNA polymerase (RdRp) activities. The first is primer-dependent and associated with the 106-kDa non-structural protein 12 (nsp12), whereas the second is catalysed by the 22-kDa nsp8. This latter enzyme is capable of de novo initiation and has been proposed to operate as a primase. Interestingly, this protein has only been crystallized together with the 10-kDa nsp7, forming a hexadecameric, dsRNA-encircling ring structure [i.e. nsp(7+8), consisting of 8 copies of both nsps]. To better understand the implications of these structural characteristics for nsp8-driven RNA synthesis, we studied the prerequisites for the formation of the nsp(7+8) complex and its polymerase activity. We found that in particular the exposure of nsp8's natural N-terminal residue was paramount for both the protein's ability to associate with nsp7 and for boosting its RdRp activity. Moreover, this 'improved' recombinant nsp8 was capable of extending primed RNA templates, a property that had gone unnoticed thus far. The latter activity is, however, ~20-fold weaker than that of the primer-dependent nsp12-RdRp at equal monomer concentrations. Finally, site-directed mutagenesis of conserved D/ExD/E motifs was employed to identify residues crucial for nsp(7+8) RdRp activity.


Asunto(s)
ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Proteínas Virales/química , Proteínas Virales/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Cationes Bivalentes/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Multimerización de Proteína , Protones , ARN/metabolismo , ARN Bicatenario/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Homología de Secuencia de Aminoácido , Proteínas Virales/genética
3.
J Virol ; 85(11): 5669-73, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21430047

RESUMEN

The RNA replication and transcription complex of coronaviruses is associated with an elaborate reticulovesicular network (RVN) of modified endoplasmic reticulum. Using cycloheximide and puromycin, we have studied the effect of translation inhibition on the RNA synthesis of severe acute respiratory syndrome coronavirus and mouse hepatitis virus. Both inhibitors prevented the usual exponential increase in viral RNA synthesis, with immunofluorescence and electron microscopy indicating that RVN development came to a standstill. Nevertheless, limited RNA synthesis was supported, implying that continued translation is not an absolute requirement and suggesting a direct link between RVN formation and accumulation of coronavirus proteins.


Asunto(s)
Virus de la Hepatitis Murina/fisiología , ARN Viral/biosíntesis , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Transcripción Genética , Replicación Viral , Animales , Chlorocebus aethiops , Cicloheximida/metabolismo , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/metabolismo , Puromicina/metabolismo , Células Vero , Proteínas Virales/metabolismo
4.
PLoS Pathog ; 6(11): e1001176, 2010 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21079686

RESUMEN

Increasing the intracellular Zn(2+) concentration with zinc-ionophores like pyrithione (PT) can efficiently impair the replication of a variety of RNA viruses, including poliovirus and influenza virus. For some viruses this effect has been attributed to interference with viral polyprotein processing. In this study we demonstrate that the combination of Zn(2+) and PT at low concentrations (2 µM Zn(2+) and 2 µM PT) inhibits the replication of SARS-coronavirus (SARS-CoV) and equine arteritis virus (EAV) in cell culture. The RNA synthesis of these two distantly related nidoviruses is catalyzed by an RNA-dependent RNA polymerase (RdRp), which is the core enzyme of their multiprotein replication and transcription complex (RTC). Using an activity assay for RTCs isolated from cells infected with SARS-CoV or EAV--thus eliminating the need for PT to transport Zn(2+) across the plasma membrane--we show that Zn(2+) efficiently inhibits the RNA-synthesizing activity of the RTCs of both viruses. Enzymatic studies using recombinant RdRps (SARS-CoV nsp12 and EAV nsp9) purified from E. coli subsequently revealed that Zn(2+) directly inhibited the in vitro activity of both nidovirus polymerases. More specifically, Zn(2+) was found to block the initiation step of EAV RNA synthesis, whereas in the case of the SARS-CoV RdRp elongation was inhibited and template binding reduced. By chelating Zn(2+) with MgEDTA, the inhibitory effect of the divalent cation could be reversed, which provides a novel experimental tool for in vitro studies of the molecular details of nidovirus replication and transcription.


Asunto(s)
Arterivirus/enzimología , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Replicación Viral/efectos de los fármacos , Compuestos de Zinc/farmacología , Animales , Arterivirus/efectos de los fármacos , Infecciones por Arterivirus/tratamiento farmacológico , Infecciones por Arterivirus/patología , Infecciones por Arterivirus/virología , Western Blotting , Chlorocebus aethiops , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/enzimología , Escherichia coli/genética , Técnicas In Vitro , Ionóforos/farmacología , ARN Mensajero/genética , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Síndrome Respiratorio Agudo Grave/tratamiento farmacológico , Síndrome Respiratorio Agudo Grave/patología , Síndrome Respiratorio Agudo Grave/virología , Células Vero
5.
J Virol ; 84(2): 833-46, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19889777

RESUMEN

To accommodate its RNA synthesis in the infected cell, severe acute respiratory syndrome coronavirus (SARS-CoV) induces a cytoplasmic reticulovesicular network (RVN) that is derived from endoplasmic reticulum (ER) membranes. We set out to investigate how the early secretory pathway interacts with the RVN and the viral replication/transcription complex (RTC) that is anchored to it. When the secretory pathway was disrupted by brefeldin A (BFA) treatment at the start of infection, RVN formation and viral RTC activity were not blocked and continued up to 11 h postinfection, although RNA synthesis was reduced by ca. 80%. In vitro RTC assays, using membrane fractions from infected cells, demonstrated that BFA does not directly interfere with the activity of the viral RNA-synthesizing enzymes. Confocal microscopy studies showed that early secretory pathway components are not associated with SARS-CoV-induced replication sites, although our studies revealed that infection induces a remarkable redistribution of the translocon subunit Sec61alpha. Ultrastructural studies, including electron tomography, revealed that the formation of the RVN and all its previously documented features can occur in the presence of BFA, despite differences in the volume and morphology of the network. We therefore conclude that early secretory pathway proteins do not play a direct role in RVN morphogenesis or the functionality of the SARS-CoV RTC. The BFA-induced disruption of ER integrity and functionality probably affects the overall quality of the membrane scaffold that is needed to support the viral RTC and/or the availability of specific host factors, which in turn compromises viral RNA synthesis.


Asunto(s)
Retículo Endoplásmico , Interacciones Huésped-Patógeno , Membranas Intracelulares , Proteínas/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Animales , Brefeldino A/farmacología , Chlorocebus aethiops , Tomografía con Microscopio Electrónico , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Retículo Endoplásmico/virología , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Membranas Intracelulares/virología , Microscopía Confocal , Proteínas/efectos de los fármacos , Proteínas/genética , ARN Viral/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Células Vero/ultraestructura , Células Vero/virología , Proteínas Virales/metabolismo , Replicación Viral
6.
Nucleic Acids Res ; 38(1): 203-14, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19875418

RESUMEN

An RNA-dependent RNA polymerase (RdRp) is the central catalytic subunit of the RNA-synthesizing machinery of all positive-strand RNA viruses. Usually, RdRp domains are readily identifiable by comparative sequence analysis, but biochemical confirmation and characterization can be hampered by intrinsic protein properties and technical complications. It is presumed that replication and transcription of the approximately 30-kb severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) RNA genome are catalyzed by an RdRp domain in the C-terminal part of nonstructural protein 12 (nsp12), one of 16 replicase subunits. However, thus far full-length nsp12 has proven refractory to expression in bacterial systems, which has hindered both the biochemical characterization of coronavirus RNA synthesis and RdRp-targeted antiviral drug design. Here, we describe a combined strategy involving bacterial expression of an nsp12 fusion protein and its in vivo cleavage to generate and purify stable SARS-CoV nsp12 (106 kDa) with a natural N-terminus and C-terminal hexahistidine tag. This recombinant protein possesses robust in vitro RdRp activity, as well as a significant DNA-dependent activity that may facilitate future inhibitor studies. The SARS-CoV nsp12 is primer dependent on both homo- and heteropolymeric templates, supporting the likeliness of a close enzymatic collaboration with the intriguing RNA primase activity that was recently proposed for coronavirus nsp8.


Asunto(s)
ARN Polimerasa Dependiente del ARN/metabolismo , ARN/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Proteínas Virales/metabolismo , Nucleótidos/metabolismo , ARN/biosíntesis , ARN Polimerasa Dependiente del ARN/aislamiento & purificación , Moldes Genéticos , Proteínas Virales/aislamiento & purificación
7.
PLoS Pathog ; 4(5): e1000054, 2008 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-18451981

RESUMEN

SARS-coronavirus (SARS-CoV) replication and transcription are mediated by a replication/transcription complex (RTC) of which virus-encoded, non-structural proteins (nsps) are the primary constituents. The 16 SARS-CoV nsps are produced by autoprocessing of two large precursor polyproteins. The RTC is believed to be associated with characteristic virus-induced double-membrane structures in the cytoplasm of SARS-CoV-infected cells. To investigate the link between these structures and viral RNA synthesis, and to dissect RTC organization and function, we isolated active RTCs from infected cells and used them to develop the first robust assay for their in vitro activity. The synthesis of genomic RNA and all eight subgenomic mRNAs was faithfully reproduced by the RTC in this in vitro system. Mainly positive-strand RNAs were synthesized and protein synthesis was not required for RTC activity in vitro. All RTC activity, enzymatic and putative membrane-spanning nsps, and viral RNA cosedimented with heavy membrane structures. Furthermore, the pelleted RTC required the addition of a cytoplasmic host factor for reconstitution of its in vitro activity. Newly synthesized subgenomic RNA appeared to be released, while genomic RNA remained predominantly associated with the RTC-containing fraction. RTC activity was destroyed by detergent treatment, suggesting an important role for membranes. The RTC appeared to be protected by membranes, as newly synthesized viral RNA and several replicase/transcriptase subunits were protease- and nuclease-resistant and became susceptible to degradation only upon addition of a non-ionic detergent. Our data establish a vital functional dependence of SARS-CoV RNA synthesis on virus-induced membrane structures.


Asunto(s)
Interacciones Huésped-Patógeno , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Transcripción Genética/genética , Replicación Viral/fisiología , Animales , Chlorocebus aethiops , Citoplasma/metabolismo , Dactinomicina/farmacología , Regulación Viral de la Expresión Génica , Genoma Viral , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , ARN Viral/biosíntesis , Conejos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/ultraestructura , Transcripción Genética/efectos de los fármacos , Células Vero , Proteínas de la Matriz Viral/metabolismo
8.
J Virol ; 81(12): 6771-4, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17428856

RESUMEN

A 190-nucleotide (nt) packaging signal (PS) located in the 3' end of open reading frame 1b in the mouse hepatitis virus, a group IIa coronavirus, was previously postulated to direct genome RNA packaging. Based on phylogenetic data and structure probing, we have identified a 95-nt hairpin within the 190-nt PS domain which is conserved in all group IIa coronaviruses but not in the severe acute respiratory syndrome coronavirus (group IIb), group I coronaviruses, or group III coronaviruses. The hairpin is composed of six copies of a repeating structural subunit that consists of 2-nt bulges and 5-bp stems. We propose that repeating AA bulges are characteristic features of group IIa PSs.


Asunto(s)
Coronavirus/genética , Genoma Viral , Secuencia de Bases , Bases de Datos de Proteínas , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Virus ARN/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
9.
Virology ; 361(1): 18-26, 2007 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-17316733

RESUMEN

Many viruses encode antagonists to prevent interferon (IFN) induction. Infection of fibroblasts with the murine hepatitis coronavirus (MHV) and SARS-coronavirus (SARS-CoV) did not result in nuclear translocation of interferon-regulatory factor 3 (IRF3), a key transcription factor involved in IFN induction, and induction of IFN mRNA transcription. Furthermore, MHV and SARS-CoV infection could not prevent IFN induction by poly (I:C) or Sendai virus, suggesting that these CoVs do not inactivate IRF3-mediated transcription regulation, but apparently prevent detection of replicative RNA by cellular sensory molecules. Our data indicate that shielding of viral RNA to host cell sensors might be the main general mechanism for coronaviruses to prevent IFN induction.


Asunto(s)
Interferón-alfa/metabolismo , Síndrome Respiratorio Agudo Grave/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Animales , Transporte Biológico , Chlorocebus aethiops , Factor 3 Regulador del Interferón/metabolismo , Células L , Ratones , Virus de la Hepatitis Murina/inmunología , ARN Viral/fisiología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Virus Sendai/inmunología , Síndrome Respiratorio Agudo Grave/virología , Células Vero
10.
J Mol Biol ; 363(4): 858-65, 2006 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-16989861

RESUMEN

We solved the structures of the single-stranded RNA bacteriophages Qbeta, PP7 and AP205 by cryo-electron microscopy. On the outside, the symmetrized electron density maps resemble the previously described cryo-electron microscopy structure of MS2. RNA density is present inside the capsids, suggesting that the genomic RNA of Qbeta, PP7 and AP205, analogous to MS2, contains many coat protein-binding sites in addition to the hairpin on which assembly and packaging are initiated. All four bacteriophages harbour the same overall arrangement of the RNA, which is a unique combination of both triangles and pentagons. This combination has not been found in other icosahedral viruses, in which the RNA structures are either triangular or pentagonal. Strikingly, the unique RNA packing of the Leviviridae appears to deploy the most efficient method of RNA storage by obeying icosahedral symmetry.


Asunto(s)
Microscopía por Crioelectrón , Leviviridae/genética , Leviviridae/ultraestructura , Conformación de Ácido Nucleico , ARN Viral/química , ARN Viral/ultraestructura , Secuencia de Aminoácidos , Genoma Viral/genética , Datos de Secuencia Molecular , Alineación de Secuencia , Proteínas Virales/química , Proteínas Virales/genética , Virión/genética , Virión/ultraestructura
11.
Cell ; 112(1): 123-9, 2003 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-12526799

RESUMEN

Turnip yellow mosaic virus (TYMV) has a genomic plus-strand RNA with a 5' cap followed by overlapping and different reading frames for the movement protein and polyprotein, while the distal coat protein cistron is translated from a subgenomic RNA. The 3'-untranslated region harbors a tRNA-like structure (TLS) to which a valine moiety can be added and it is indispensable for virus viability. Here, we report about a surprising interaction between TYMV-RNA-programmed ribosomes and 3'-valylated TLS that yields polyprotein with the valine N terminally incorporated by a translation mechanism resistant to regular initiation inhibitors. Disruption of the TLS exclusively abolishes polyprotein synthesis, which can be restored by adding excess TLS in trans. Our observations imply a novel eukaryotic mechanism for internal initiation of mRNA translation.


Asunto(s)
Imitación Molecular , Virus del Mosaico/genética , Biosíntesis de Proteínas , ARN de Transferencia/genética , ARN Viral , Ribosomas/metabolismo , Regiones no Traducidas 3'/química , Regiones no Traducidas 3'/genética , Regiones no Traducidas 3'/metabolismo , Modelos Genéticos , Virus del Mosaico/metabolismo , Estructura Secundaria de Proteína , ARN Mensajero/metabolismo , Ribosomas/efectos de los fármacos , Especificidad por Sustrato , Triticum , Tymovirus/genética , Valina/química , Valina/metabolismo , Proteínas Virales/biosíntesis , Proteínas Virales/química , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...