Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Robot AI ; 10: 1108114, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936408

RESUMEN

Introduction: Video-based clinical rating plays an important role in assessing dystonia and monitoring the effect of treatment in dyskinetic cerebral palsy (CP). However, evaluation by clinicians is time-consuming, and the quality of rating is dependent on experience. The aim of the current study is to provide a proof-of-concept for a machine learning approach to automatically assess scoring of dystonia using 2D stick figures extracted from videos. Model performance was compared to human performance. Methods: A total of 187 video sequences of 34 individuals with dyskinetic CP (8-23 years, all non-ambulatory) were filmed at rest during lying and supported sitting. Videos were scored by three raters according to the Dyskinesia Impairment Scale (DIS) for arm and leg dystonia (normalized scores ranging from 0-1). Coordinates in pixels of the left and right wrist, elbow, shoulder, hip, knee and ankle were extracted using DeepLabCut, an open source toolbox that builds on a pose estimation algorithm. Within a subset, tracking accuracy was assessed for a pretrained human model and for models trained with an increasing number of manually labeled frames. The mean absolute error (MAE) between DeepLabCut's prediction of the position of body points and manual labels was calculated. Subsequently, movement and position features were calculated from extracted body point coordinates. These features were fed into a Random Forest Regressor to train a model to predict the clinical scores. The model performance trained with data from one rater evaluated by MAEs (model-rater) was compared to inter-rater accuracy. Results: A tracking accuracy of 4.5 pixels (approximately 1.5 cm) could be achieved by adding 15-20 manually labeled frames per video. The MAEs for the trained models ranged from 0.21 ± 0.15 for arm dystonia to 0.14 ± 0.10 for leg dystonia (normalized DIS scores). The inter-rater MAEs were 0.21 ± 0.22 and 0.16 ± 0.20, respectively. Conclusion: This proof-of-concept study shows the potential of using stick figures extracted from common videos in a machine learning approach to automatically assess dystonia. Sufficient tracking accuracy can be reached by manually adding labels within 15-20 frames per video. With a relatively small data set, it is possible to train a model that can automatically assess dystonia with a performance comparable to human scoring.

2.
J Exp Biol ; 224(Pt 6)2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33568444

RESUMEN

Innate defensive responses such as freezing or escape are essential for animal survival. Mice show defensive behaviour to stimuli sweeping overhead, like a bird cruising the sky. Here, we tested this in young male mice and found that mice reduced their defensive freezing after sessions with a stimulus passing overhead repeatedly. This habituation is stimulus specific, as mice freeze again to a novel shape. Habituation occurs regardless of the visual field location of the repeated stimulus. The mice generalized over a range of sizes and shapes, but distinguished objects when they differed in both size and shape. Innate visual defensive responses are thus strongly influenced by previous experience as mice learn to ignore specific stimuli.


Asunto(s)
Reacción de Fuga , Habituación Psicofisiológica , Animales , Aprendizaje , Masculino , Ratones , Ratones Endogámicos C57BL
3.
Front Neural Circuits ; 12: 75, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30327591

RESUMEN

Selecting behavioral outputs in a dynamic environment is the outcome of integrating multiple information streams and weighing possible action outcomes with their value. Integration depends on the medial prefrontal cortex (mPFC), but how mPFC neurons encode information necessary for appropriate behavioral adaptation is poorly understood. To identify spiking patterns of mPFC during learned behavior, we extracellularly recorded neuronal action potential firing in the mPFC of rats performing a whisker-based "Go"/"No-go" object localization task. First, we identify three functional groups of neurons, which show different degrees of spiking modulation during task performance. One group increased spiking activity during correct "Go" behavior (positively modulated), the second group decreased spiking (negatively modulated) and one group did not change spiking. Second, the relative change in spiking was context-dependent and largest when motor output had contextual value. Third, the negatively modulated population spiked more when rats updated behavior following an error compared to trials without integration of error information. Finally, insufficient spiking in the positively modulated population predicted erroneous behavior under dynamic "No-go" conditions. Thus, mPFC neuronal populations with opposite spike modulation characteristics differentially encode context and behavioral updating and enable flexible integration of error corrections in future actions.


Asunto(s)
Potenciales de Acción/fisiología , Adaptación Fisiológica/fisiología , Aprendizaje/fisiología , Corteza Prefrontal/fisiología , Desempeño Psicomotor/fisiología , Vibrisas/fisiología , Animales , Masculino , Distribución Aleatoria , Ratas , Ratas Wistar , Vibrisas/inervación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...