Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Water Res ; 236: 119948, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37098320

RESUMEN

Metal sulfide precipitation is a viable technology for high-yield metal recovery from hydrometallurgical streams, with the potential to streamline the process design. A single-stage elemental sulfur (S0)-reducing and metal sulfide precipitating process can optimize the operational and capital costs associated with this technology, boosting the competitiveness of this technology for wider industrial application. However, limited research is available on biological sulfur reduction at high temperature and low pH, frequent conditions of hydrometallurgical process waters. Here we assessed the sulfidogenic activity of an industrial granular sludge previously shown to reduce S0 under hot (60-80 °C) and acidic conditions (pH 3.6). A 4 L gas-lift reactor was operated for 206 days and fed continuously with culture medium and copper. During the reactor operation, we explored the effect of the hydraulic retention time, copper loading rates, temperature, and H2 and CO2 flow rates on the volumetric sulfide production rates (VSPR). A maximum VSPR of 274 ± 6 mg·L-1·d-1 was reached, a 3.9-fold increase of the VSPR previously reported with this inoculum in batch operation. Interestingly, the maximum VSPR was achieved at the highest copper loading rates. At the maximum copper loading rate (509 mg·L-1·d-1), a 99.96% copper removal efficiency was observed. 16 s rRNA gene amplicon sequencing revealed an increased abundance of reads assigned to Desulfurella and Thermoanaerobacterium in periods of higher sulfidogenic activity.


Asunto(s)
Cobre , Eliminación de Residuos Líquidos , Reactores Biológicos/microbiología , Sulfuros , Azufre , Oxidación-Reducción
2.
Front Microbiol ; 13: 816605, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35391737

RESUMEN

In acid drainage environments, biosulfidogenesis by sulfate-reducing bacteria (SRB) attenuates the extreme conditions by enabling the precipitation of metals as their sulfides, and the neutralization of acidity through proton consumption. So far, only a handful of moderately acidophilic SRB species have been described, most of which are merely acidotolerant. Here, a novel species within a novel genus of moderately acidophilic SRB is described, Acididesulfobacillus acetoxydans gen. nov. sp. nov. strain INE, able to grow at pH 3.8. Bioreactor studies with strain INE at optimum (5.0) and low (3.9) pH for growth showed that strain INE alkalinized its environment, and that this was more pronounced at lower pH. These studies also showed the capacity of strain INE to completely oxidize organic acids to CO2, which is uncommon among acidophilic SRB. Since organic acids are mainly in their protonated form at low pH, which increases their toxicity, their complete oxidation may be an acid stress resistance mechanism. Comparative proteogenomic and membrane lipid analysis further indicated that the presence of saturated ether-bound lipids in the membrane, and their relative increase at lower pH, was a protection mechanism against acid stress. Interestingly, other canonical acid stress resistance mechanisms, such as a Donnan potential and increased active charge transport, did not appear to be active.

3.
Microorganisms ; 8(9)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825668

RESUMEN

Acidic pit lakes are abandoned open pit mines filled with acid mine drainage (AMD)-highly acidic, metalliferous waters that pose a severe threat to the environment and are rarely properly remediated. Here, we investigated two meromictic, oligotrophic acidic mine pit lakes in the Iberian Pyrite Belt (IPB), Filón Centro (Tharsis) (FC) and La Zarza (LZ). We observed a natural attenuation of acidity and toxic metal concentrations towards the lake bottom, which was more pronounced in FC. The detection of Cu and Zn sulfides in the monimolimnion of FC suggests precipitation of dissolved metals as metal sulfides, pointing to biogenic sulfide formation. This was supported by microbial diversity analysis via 16S rRNA gene amplicon sequencing of samples from the water column, which showed the presence of sulfidogenic microbial taxa in FC and LZ. In the monimolimnion of FC, sequences affiliated with the putative sulfate-reducing genus Desulfomonile were dominant (58%), whereas in the more acidic and metal-enriched LZ, elemental sulfur-reducing Acidianus and Thermoplasma spp., and disproportionating Desulfocapsa spp. were more abundant. Furthermore, the detection of reads classified as methanogens and Desulfosporosinus spp., although at low relative abundance, represents one of the lowest pH values (2.9 in LZ) at which these taxa have been reported, to our knowledge. Analysis of potential biomarker lipids provided evidence that high levels of phosphocholine lipids with mixed acyl/ether glycerol core structures were associated with Desulfomonile, while ceramide lipids were characteristic of Microbacter in these environments. We propose that FC and LZ function as natural bioremediation reactors where metal sulfide precipitation is mediated by biosulfidogenesis starting from elemental sulfur reduction and disproportionation at an early stage (LZ), followed by sulfate reduction at a later stage (FC).

4.
J Biol Methods ; 5(1): e86, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31453239

RESUMEN

Genome analysis using pulsed-field gel electrophoresis (PFGE) has been used in applications ranging from typing bacterial strains to radiobiology to cancer research. While methods for running PFGE have been significantly improved since its invention, the method for preparing chromosomal DNA itself has remained essentially unchanged. This limits the applicability of PFGE, especially when analyses require many samples. We have streamlined sample preparation for routine applications of PFGE through the use of deep-well 48-well plates. Besides saving time, our protocol has the added advantage of reducing the volume of expensive reagents. Our improved protocol enables us to reduce throughput time and simplify the procedure, facilitating wider application of PFGE-based analyses in the laboratory.

5.
Microb Biotechnol ; 7(1): 44-53, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24004455

RESUMEN

Glycerol production by Saccharomyces cerevisiae, which is required for redox-cofactor balancing in anaerobic cultures, causes yield reduction in industrial bioethanol production. Recently, glycerol formation in anaerobic S. cerevisiae cultures was eliminated by expressing Escherichia coli (acetylating) acetaldehyde dehydrogenase (encoded by mhpF) and simultaneously deleting the GPD1 and GPD2 genes encoding glycerol-3-phosphate dehydrogenase, thus coupling NADH reoxidation to reduction of acetate to ethanol. Gpd⁻ strains are, however, sensitive to high sugar concentrations, which complicates industrial implementation of this metabolic engineering concept. In this study, laboratory evolution was used to improve osmotolerance of a Gpd⁻ mhpF-expressing S. cerevisiae strain. Serial batch cultivation at increasing osmotic pressure enabled isolation of an evolved strain that grew anaerobically at 1 M glucose, at a specific growth rate of 0.12 h⁻¹. The evolved strain produced glycerol at low concentrations (0.64 ± 0.33 g l⁻¹). However, these glycerol concentrations were below 10% of those observed with a Gpd⁺ reference strain. Consequently, the ethanol yield on sugar increased from 79% of the theoretical maximum in the reference strain to 92% for the evolved strains. Genetic analysis indicated that osmotolerance under aerobic conditions required a single dominant chromosomal mutation, and one further mutation in the plasmid-borne mhpF gene for anaerobic growth.


Asunto(s)
Acetatos/metabolismo , Glucosa/metabolismo , Glicerol/metabolismo , Glicerolfosfato Deshidrogenasa/deficiencia , Ingeniería Metabólica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Anaerobiosis , Etanol/metabolismo , Redes y Vías Metabólicas/genética , Mutación , Presión Osmótica , Oxidación-Reducción , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/fisiología , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...