Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
4.
Clin Pharmacol Ther ; 116(2): 460-470, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38822554

RESUMEN

Nonracemic amisulpride (SEP-4199) is an investigational 85:15 ratio of aramisulpride to esamisulpride and currently in clinical trials for the treatment of bipolar depression. During testing of SEP-4199, a pharmacokinetic/pharmacodynamic (PK/PD) disconnect was discovered that prompted the development of a controlled-release (CR) formulation with improved therapeutic index for QT prolongation. Observations that supported the development of a CR formulation included (i) plasma concentrations of amisulpride enantiomers were cleared within 24-hours, but brain dopamine D2 receptor (D2R) occupancies, although achieving stable levels during this time, required 5 days to return to baseline; (ii) nonracemic amisulpride administered to non-human primates produced significantly greater D2R occupancies during a gradual 6-hour administration compared with a single bolus; (iii) concentration-occupancy curves were left-shifted in humans when nonracemic amisulpride was gradually administered over 3 and 6 hours compared with immediate delivery; (iv) CR solid oral dose formulations of nonracemic amisulpride were able to slow drug dissolution in vitro and reduce peak plasma exposures in vivo in human subjects. By mathematically solving for a drug distribution step into an effect compartment, and for binding to target receptors, the discovery of a novel PK/PD model (termed here as Distribution Model) accounted for hysteresis between plasma and brain, a lack of receptor saturation, and an absence of accumulation of drug occupancy with daily doses. The PK/PD disconnect solved by the Distribution Model provided model-informed drug development to continue in Phase III using the non-bioequivalent CR formulation with diminished QT prolongation as dose-equivalent to the immediate release (IR) formulation utilized in Phase II.


Asunto(s)
Amisulprida , Encéfalo , Preparaciones de Acción Retardada , Receptores de Dopamina D2 , Equivalencia Terapéutica , Amisulprida/administración & dosificación , Amisulprida/farmacocinética , Humanos , Animales , Encéfalo/metabolismo , Masculino , Receptores de Dopamina D2/metabolismo , Adulto , Desarrollo de Medicamentos/métodos , Modelos Biológicos , Femenino , Descubrimiento de Drogas
6.
Alzheimers Dement (N Y) ; 10(2): e12474, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774587

RESUMEN

INTRODUCTION: Addressing practical challenges in clinical practice after the recent approvals of amyloid antibodies in Alzheimer's disease (AD) will benefit more patients. However, generating these answers using clinical trials or real-world evidence is not practical, nor feasible. METHODS: Here we use a Quantitative Systems Pharmacology (QSP) computational model of amyloid aggregation dynamics, well validated with clinical data on biomarkers and amyloid-related imaging abnormality-edema (ARIA-E) liability of six amyloid antibodies in clinical trials to explore various clinical practice challenges. RESULTS: Treatment duration to reach amyloid negativity ranges from 12 to 44, 16 to 40, and 6 to 20 months for lecanemab, aducanumab, and donanemab, respectively, for baseline central amyloid values between 50 and 200 Centiloids (CL). Changes in plasma cerebrospinal fluid Aß42 and the plasma Aß42/ Aß40 ratio-fluid biomarkers to detect central amyloid negativity-is greater for lecanemab than for aducanumab and donanemab, indicating that these fluid amyloid biomarkers are only suitable for lecanemab. After reaching amyloid negativity an optimal maintenance schedule consists of a 24-month, 48-month and 64-month interval for 10 mg/kg (mpk) lecanemab, 10 mpk aducanumab, and 20 mpk donanemab, respectively, to keep central amyloid negative for 10 years. Cumulative ARIA-E liability could be reduced to almost half by introducing a drug holiday in the first months. For patients experiencing ARIA-E, restarting treatment with a conservative titration strategy resulted in an additional delay ranging between 3 and 4 months (donanemab), 5 months (lecanemab), and up to 7 months (aducanumab) for reaching amyloid negativity, depending upon the timing of the incident. Clinical trial designs for Down syndrome patients suggested the same rank order for central amyloid reduction, but higher ARIA-E liability especially for donanemab, which can be significantly mitigated by adopting a longer titration period. DISCUSSION: This QSP platform could support clinical practice challenges to optimize real-world treatment paradigms for new and existing amyloid drugs.

9.
11.
Clin Pharmacokinet ; 63(5): 657-668, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38530588

RESUMEN

BACKGROUND AND OBJECTIVE: The use of bedaquiline as a treatment option for drug-resistant tuberculosis meningitis (TBM) is of interest to address the increased prevalence of resistance to first-line antibiotics. To this end, we describe a whole-body physiologically based pharmacokinetic (PBPK) model for bedaquiline to predict central nervous system (CNS) exposure. METHODS: A whole-body PBPK model was developed for bedaquiline and its metabolite, M2. The model included compartments for brain and cerebrospinal fluid (CSF). Model predictions were evaluated by comparison to plasma PK time profiles following different dosing regimens and sparse CSF concentrations data from patients. Simulations were then conducted to compare CNS and lung exposures to plasma exposure at clinically relevant dosing schedules. RESULTS: The model appropriately described the observed plasma and CSF bedaquiline and M2 concentrations from patients with pulmonary tuberculosis (TB). The model predicted a high impact of tissue binding on target site drug concentrations in CNS. Predicted unbound exposures within brain interstitial exposures were comparable with unbound vascular plasma and unbound lung exposures. However, unbound brain intracellular exposures were predicted to be 7% of unbound vascular plasma and unbound lung intracellular exposures. CONCLUSIONS: The whole-body PBPK model for bedaquiline and M2 predicted unbound concentrations in brain to be significantly lower than the unbound concentrations in the lung at clinically relevant doses. Our findings suggest that bedaquiline may result in relatively inferior efficacy against drug-resistant TBM when compared with efficacy against drug-resistant pulmonary TB.


Asunto(s)
Antituberculosos , Diarilquinolinas , Modelos Biológicos , Tuberculosis Meníngea , Humanos , Diarilquinolinas/farmacocinética , Antituberculosos/farmacocinética , Antituberculosos/administración & dosificación , Tuberculosis Meníngea/tratamiento farmacológico , Adulto , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/metabolismo , Masculino , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/efectos de los fármacos , Femenino , Simulación por Computador , Persona de Mediana Edad , Encéfalo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...