Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39072369

RESUMEN

The cerebellum contributes to a diverse array of motor conditions, including ataxia, dystonia, and tremor. The neural substrates that encode this diversity are unclear. Here, we tested whether the neural spike activity of cerebellar output neurons is distinct between movement disorders with different impairments, generalizable across movement disorders with similar impairments, and capable of causing distinct movement impairments. Using in vivo awake recordings as input data, we trained a supervised classifier model to differentiate the spike parameters between mouse models for ataxia, dystonia, and tremor. The classifier model correctly assigned mouse phenotypes based on single-neuron signatures. Spike signatures were shared across etiologically distinct but phenotypically similar disease models. Mimicking these pathophysiological spike signatures with optogenetics induced the predicted motor impairments in otherwise healthy mice. These data show that distinct spike signatures promote the behavioral presentation of cerebellar diseases.


Intentional movement is fundamental to achieving many goals, whether they are as complicated as driving a car or as routine as feeding ourselves with a spoon. The cerebellum is a key brain area for coordinating such movement. Damage to this region can cause various movement disorders: ataxia (uncoordinated movement); dystonia (uncontrolled muscle contractions); and tremor (involuntary and rhythmic shaking). While abnormal electrical activity in the brain associated with movement disorders has been recorded for decades, previous studies often explored one movement disorder at a time. Therefore, it remained unclear whether the underlying brain activity is similar across movement disorders. Van der Heijden and Brown et al. analyzed recordings of neuron activity in the cerebellum of mice with movement disorders to create an activity profile for each disorder. The researchers then used machine learning to generate a classifier that could separate profiles associated with manifestations of ataxia, dystonia, and tremor based on unique features of their neural activity. The ability of the model to separate the three types of movement disorders indicates that abnormal movements can be distinguished based on neural activity patterns. When additional manifestations of these abnormal movements were considered, multiple mouse models of dystonia and tremor tended to show similar profiles. Ataxia models had several different types of neural activity that were all distinct from the dystonia and tremor profiles. After identifying the activity associated with each movement disorder, Van der Heijden and Brown et al. induced the same activity in the cerebella of healthy mice, which then caused the corresponding abnormal movements. These findings lay an important groundwork for the development of treatments for neurological disorders involving ataxia, dystonia, and tremor. They identify the cerebellum, and specific patterns of activity within it, as potential therapeutic targets. While the different activity profiles of ataxia may require more consideration, the neural activity associated with dystonia and tremor appears to be generalizable across multiple manifestations, suggesting potential treatments could be broadly applicable for these disorders.


Asunto(s)
Ataxia , Núcleos Cerebelosos , Modelos Animales de Enfermedad , Distonía , Temblor , Animales , Temblor/fisiopatología , Ratones , Distonía/fisiopatología , Núcleos Cerebelosos/fisiopatología , Núcleos Cerebelosos/fisiología , Ataxia/fisiopatología , Optogenética , Potenciales de Acción/fisiología , Masculino , Femenino , Neuronas/fisiología
2.
Cerebellum ; 23(5): 1754-1767, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38780757

RESUMEN

Evidence from clinical and preclinical studies has shown that the cerebellum contributes to cognitive functions, including social behaviors. Now that the cerebellum's role in a wider range of behaviors has been confirmed, the question arises whether the cerebellum contributes to social behaviors via the same mechanisms with which it modulates movements. This review seeks to answer whether the cerebellum guides motor and social behaviors through identical pathways. It focuses on studies in which cerebellar cells, synapses, or genes are manipulated in a cell-type specific manner followed by testing of the effects on social and motor behaviors. These studies show that both anatomically restricted and cerebellar cortex-wide manipulations can lead to social impairments without abnormal motor control, and vice versa. These studies suggest that the cerebellum employs different cellular, synaptic, and molecular pathways for social and motor behaviors. Future studies warrant a focus on the diverging mechanisms by which the cerebellum contributes to a wide range of neural functions.


Asunto(s)
Cerebelo , Actividad Motora , Vías Nerviosas , Conducta Social , Animales , Cerebelo/fisiología , Ratones , Actividad Motora/fisiología , Vías Nerviosas/fisiología , Conducta Animal/fisiología
3.
Dystonia ; 22023.
Artículo en Inglés | MEDLINE | ID: mdl-38105800

RESUMEN

Dystonia is a movement disorder characterized by involuntary co- or over-contractions of the muscles, which results in abnormal postures and movements. These symptoms arise from the pathophysiology of a brain-wide dystonia network. There is mounting evidence suggesting that the cerebellum is a central node in this network. For example, manipulations that target the cerebellum cause dystonic symptoms in mice, and cerebellar neuromodulation reduces these symptoms. Although numerous findings provide insight into dystonia pathophysiology, they also raise further questions. Namely, how does cerebellar pathophysiology cause the diverse motor abnormalities in dystonia, tremor, and ataxia? Here, we describe recent work in rodents showing that distinct cerebellar circuit abnormalities could define different disorders and we discuss potential mechanisms that determine the behavioral presentation of cerebellar diseases.

4.
Int Rev Neurobiol ; 169: 163-215, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37482392

RESUMEN

Dystonia is currently ranked as the third most prevalent motor disorder. It is typically characterized by involuntary muscle over- or co-contractions that can cause painful abnormal postures and jerky movements. Dystonia is a heterogenous disorder-across patients, dystonic symptoms vary in their severity, body distribution, temporal pattern, onset, and progression. There are also a growing number of genes that are associated with hereditary dystonia. In addition, multiple brain regions are associated with dystonic symptoms in both genetic and sporadic forms of the disease. The heterogeneity of dystonia has made it difficult to fully understand its underlying pathophysiology. However, the use of animal models has been used to uncover the complex circuit mechanisms that lead to dystonic behaviors. Here, we summarize findings from animal models harboring mutations in dystonia-associated genes and phenotypic animal models with overt dystonic motor signs resulting from spontaneous mutations, neural circuit perturbations, or pharmacological manipulations. Taken together, an emerging picture depicts dystonia as a result of brain-wide network dysfunction driven by basal ganglia and cerebellar dysfunction. In the basal ganglia, changes in dopaminergic, serotonergic, noradrenergic, and cholinergic signaling are found across different animal models. In the cerebellum, abnormal burst firing activity is observed in multiple dystonia models. We are now beginning to unveil the extent to which these structures mechanistically interact with each other. Such mechanisms inspire the use of pre-clinical animal models that will be used to design new therapies including drug treatments and brain stimulation.


Asunto(s)
Distonía , Trastornos Distónicos , Animales , Distonía/genética , Modelos Animales de Enfermedad , Trastornos Distónicos/genética , Ganglios Basales , Encéfalo
5.
bioRxiv ; 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37214855

RESUMEN

The cerebellum contributes to a diverse array of motor conditions including ataxia, dystonia, and tremor. The neural substrates that encode this diversity are unclear. Here, we tested whether the neural spike activity of cerebellar output neurons predicts the phenotypic presentation of cerebellar pathophysiology. Using in vivo awake recordings as input data, we trained a supervised classifier model to differentiate the spike parameters between mouse models for ataxia, dystonia, and tremor. The classifier model correctly predicted mouse phenotypes based on single neuron signatures. Spike signatures were shared across etiologically distinct but phenotypically similar disease models. Mimicking these pathophysiological spike signatures with optogenetics induced the predicted motor impairments in otherwise healthy mice. These data show that distinct spike signatures promote the behavioral presentation of cerebellar diseases.

6.
Nat Commun ; 14(1): 2771, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37188723

RESUMEN

Insults to the developing cerebellum can cause motor, language, and social deficits. Here, we investigate whether developmental insults to different cerebellar neurons constrain the ability to acquire cerebellar-dependent behaviors. We perturb cerebellar cortical or nuclei neuron function by eliminating glutamatergic neurotransmission during development, and then we measure motor and social behaviors in early postnatal and adult mice. Altering cortical and nuclei neurons impacts postnatal motor control and social vocalizations. Normalizing neurotransmission in cortical neurons but not nuclei neurons restores social behaviors while the motor deficits remain impaired in adults. In contrast, manipulating only a subset of nuclei neurons leaves social behaviors intact but leads to early motor deficits that are restored by adulthood. Our data uncover that glutamatergic neurotransmission from cerebellar cortical and nuclei neurons differentially control the acquisition of motor and social behaviors, and that the brain can compensate for some but not all perturbations to the developing cerebellum.


Asunto(s)
Cerebelo , Neuronas , Ratones , Animales , Cerebelo/fisiología , Neuronas/fisiología , Interneuronas , Transmisión Sináptica , Conducta Social
7.
Cerebellum ; 22(4): 719-729, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35821365

RESUMEN

There is now a substantial amount of compelling evidence demonstrating that the cerebellum may be a central locus in dystonia pathogenesis. Studies using spontaneous genetic mutations in rats and mice, engineered genetic alleles in mice, shRNA knockdown in mice, and conditional genetic silencing of fast neurotransmission in mice have all uncovered a common set of behavioral and electrophysiological defects that point to cerebellar cortical and cerebellar nuclei dysfunction as a source of dystonic phenotypes. Here, we revisit the Ptf1aCre/+;Vglut2flox/flox mutant mouse to define fundamental phenotypes and measures that are valuable for testing the cellular, circuit, and behavioral mechanisms that drive dystonia. In this model, excitatory neurotransmission from climbing fibers is genetically eliminated and, as a consequence, Purkinje cell and cerebellar nuclei firing are altered in vivo, with a prominent and lasting irregular burst pattern of spike activity in cerebellar nuclei neurons. The resulting impact on behavior is that the mice have developmental abnormalities, including twisting of the limbs and torso. These behaviors continue into adulthood along with a tremor, which can be measured with a tremor monitor or EMG. Importantly, expression of dystonic behavior is reduced upon cerebellar-targeted deep brain stimulation. The presence of specific combinations of disease-like features and therapeutic responses could reveal the causative mechanisms of different types of dystonia and related conditions. Ultimately, an emerging theme places cerebellar dysfunction at the center of a broader dystonia brain network.


Asunto(s)
Enfermedades Cerebelosas , Distonía , Trastornos Distónicos , Ratones , Ratas , Animales , Distonía/genética , Temblor , Cerebelo/patología , Células de Purkinje/fisiología , Trastornos Distónicos/genética , Enfermedades Cerebelosas/genética
8.
Dystonia ; 22023.
Artículo en Inglés | MEDLINE | ID: mdl-38273865

RESUMEN

Dystonia is a highly prevalent movement disorder that can manifest at any time across the lifespan. An increasing number of investigations have tied this disorder to dysfunction of a broad "dystonia network" encompassing the cerebellum, thalamus, basal ganglia, and cortex. However, pinpointing how dysfunction of the various anatomic components of the network produces the wide variety of dystonia presentations across etiologies remains a difficult problem. In this review, a discussion of functional network findings in non-mendelian etiologies of dystonia is undertaken. Initially acquired etiologies of dystonia and how lesion location leads to alterations in network function are explored, first through an examination of cerebral palsy, in which early brain injury may lead to dystonic/dyskinetic forms of the movement disorder. The discussion of acquired etiologies then continues with an evaluation of the literature covering dystonia resulting from focal lesions followed by the isolated focal dystonias, both idiopathic and task dependent. Next, how the dystonia network responds to therapeutic interventions, from the "geste antagoniste" or "sensory trick" to botulinum toxin and deep brain stimulation, is covered with an eye towards finding similarities in network responses with effective treatment. Finally, an examination of how focal network disruptions in mouse models has informed our understanding of the circuits involved in dystonia is provided. Together, this article aims to offer a synthesis of the literature examining dystonia from the perspective of brain networks and it provides grounding for the perspective of dystonia as disorder of network function.

9.
Cells ; 11(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36497147

RESUMEN

Tremor is the most common movement disorder. Several drugs reduce tremor severity, but no cures are available. Propranolol, a ß-adrenergic receptor blocker, is the leading treatment for tremor. However, the in vivo circuit mechanisms by which propranolol decreases tremor remain unclear. Here, we test whether propranolol modulates activity in the cerebellum, a key node in the tremor network. We investigated the effects of propranolol in healthy control mice and Car8wdl/wdl mice, which exhibit pathophysiological tremor and ataxia due to cerebellar dysfunction. Propranolol reduced physiological tremor in control mice and reduced pathophysiological tremor in Car8wdl/wdl mice to control levels. Open field and footprinting assays showed that propranolol did not correct ataxia in Car8wdl/wdl mice. In vivo recordings in awake mice revealed that propranolol modulates the spiking activity of control and Car8wdl/wdl Purkinje cells. Recordings in cerebellar nuclei neurons, the targets of Purkinje cells, also revealed altered activity in propranolol-treated control and Car8wdl/wdl mice. Next, we tested whether propranolol reduces tremor through ß1 and ß2 adrenergic receptors. Propranolol did not change tremor amplitude or cerebellar nuclei activity in ß1 and ß2 null mice or Car8wdl/wdl mice lacking ß1 and ß2 receptor function. These data show that propranolol can modulate cerebellar circuit activity through ß-adrenergic receptors and may contribute to tremor therapeutics.


Asunto(s)
Cerebelo , Propranolol , Ratones , Animales , Propranolol/farmacología , Cerebelo/metabolismo , Células de Purkinje , Ataxia , Neuronas/metabolismo , Antagonistas Adrenérgicos beta/farmacología , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Biomarcadores de Tumor
10.
iScience ; 25(11): 105429, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36388953

RESUMEN

In vivo single-unit recordings distinguish the basal spiking properties of neurons in different experimental settings and disease states. Here, we examined over 300 spike trains recorded from Purkinje cells and cerebellar nuclei neurons to test whether data sampling approaches influence the extraction of rich descriptors of firing properties. Our analyses included neurons recorded in awake and anesthetized control mice, and disease models of ataxia, dystonia, and tremor. We find that recording duration circumscribes overall representations of firing rate and pattern. Notably, shorter recording durations skew estimates for global firing rate variability toward lower values. We also find that only some populations of neurons in the same mouse are more similar to each other than to neurons recorded in different mice. These data reveal that recording duration and approach are primary considerations when interpreting task-independent single neuron firing properties. If not accounted for, group differences may be concealed or exaggerated.

11.
JCI Insight ; 7(8)2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35290244

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is an adult-onset neurodegenerative disorder. As disease progresses, motor neurons are affected, and their dysfunction contributes toward the inability to maintain proper respiratory function, a major driving force for premature death in SCA1. To investigate the isolated role of motor neurons in SCA1, we created a conditional SCA1 (cSCA1) mouse model. This model suppresses expression of the pathogenic SCA1 allele with a floxed stop cassette. cSCA1 mice crossed to a ubiquitous Cre line recapitulate all the major features of the original SCA1 mouse model; however, they took twice as long to develop. We found that the cSCA1 mice produced less than half of the pathogenic protein compared with the unmodified SCA1 mice at 3 weeks of age. In contrast, restricted expression of the pathogenic SCA1 allele in motor neurons only led to a decreased distance traveled of mice in the open field assay and did not affect body weight or survival. We conclude that a 50% or greater reduction of the mutant protein has a dramatic effect on disease onset and progression; furthermore, we conclude that expression of polyglutamine-expanded ATXN1 at this level specifically in motor neurons is not sufficient to cause premature lethality.


Asunto(s)
Mortalidad Prematura , Ataxias Espinocerebelosas , Animales , Ataxina-1/genética , Ataxina-1/metabolismo , Modelos Animales de Enfermedad , Ratones , Neuronas Motoras/patología , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo
12.
Cerebellum ; 21(5): 762-775, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35218525

RESUMEN

Spatial working memory (SWM) is a cerebrocerebellar cognitive skill supporting survival-relevant behaviors, such as optimizing foraging behavior by remembering recent routes and visited sites. It is known that SWM decision-making in rodents requires the medial prefrontal cortex (mPFC) and dorsal hippocampus. The decision process in SWM tasks carries a specific electrophysiological signature of a brief, decision-related increase in neuronal communication in the form of an increase in the coherence of neuronal theta oscillations (4-12 Hz) between the mPFC and dorsal hippocampus, a finding we replicated here during spontaneous exploration of a plus maze in freely moving mice. We further evaluated SWM decision-related coherence changes within frequency bands above theta. Decision-related coherence increases occurred in seven frequency bands between 4 and 200 Hz and decision-outcome-related differences in coherence modulation occurred within the beta and gamma frequency bands and in higher frequency oscillations up to 130 Hz. With recent evidence that Purkinje cells in the cerebellar lobulus simplex (LS) represent information about the phase and phase differences of gamma oscillations in the mPFC and dorsal hippocampus, we hypothesized that LS might be involved in the modulation of mPFC-hippocampal gamma coherence. We show that optical stimulation of LS significantly impairs SWM performance and decision-related mPFC-dCA1 coherence modulation, providing causal evidence for an involvement of cerebellar LS in SWM decision-making at the behavioral and neuronal level. Our findings suggest that the cerebellum might contribute to SWM decision-making by optimizing the decision-related modulation of mPFC-dCA1 coherence.


Asunto(s)
Memoria a Corto Plazo , Memoria Espacial , Animales , Corteza Cerebelosa , Hipocampo , Memoria a Corto Plazo/fisiología , Ratones , Corteza Prefrontal/fisiología , Memoria Espacial/fisiología
13.
Dystonia ; 12022.
Artículo en Inglés | MEDLINE | ID: mdl-36960404

RESUMEN

Converging evidence from structural imaging studies in patients, the function of dystonia-causing genes, and the comorbidity of neuronal and behavioral defects all suggest that pediatric-onset dystonia is a neurodevelopmental disorder. However, to fully appreciate the contribution of altered development to dystonia, a mechanistic understanding of how networks become dysfunctional is required for early-onset dystonia. One current hurdle is that many dystonia animal models are ideally suited for studying adult phenotypes, as the neurodevelopmental features can be subtle or are complicated by broad developmental deficits. Furthermore, most assays that are used to measure dystonia are not suited for developing postnatal mice. Here, we characterize the early-onset dystonia in Ptf1a Cre ;Vglut2 fl/fl mice, which is caused by the absence of neurotransmission from inferior olive neurons onto cerebellar Purkinje cells. We investigate motor control with two paradigms that examine how altered neural function impacts key neurodevelopmental milestones seen in postnatal pups (postnatal day 7-11). We find that Ptf1a Cre ;Vglut2 fl/fl mice have poor performance on the negative geotaxis assay and the surface righting reflex. Interestingly, we also find that Ptf1a Cre ;Vglut2 fl/fl mice make fewer ultrasonic calls when socially isolated from their nests. Ultrasonic calls are often impaired in rodent models of autism spectrum disorders, a condition that can be comorbid with dystonia. Together, we show that these assays can serve as useful quantitative tools for investigating how neural dysfunction during development influences neonatal behaviors in a dystonia mouse model. Our data implicate a shared cerebellar circuit mechanism underlying dystonia-related motor signs and social impairments in mice.

14.
J Neurosci ; 42(1): 2-15, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34785580

RESUMEN

Ankyrin scaffolding proteins are critical for membrane domain organization and protein stabilization in many different cell types including neurons. In the cerebellum, Ankyrin-R (AnkR) is highly enriched in Purkinje neurons, granule cells, and in the cerebellar nuclei (CN). Using male and female mice with a floxed allele for Ank1 in combination with Nestin-Cre and Pcp2-Cre mice, we found that ablation of AnkR from Purkinje neurons caused ataxia, regional and progressive neurodegeneration, and altered cerebellar output. We show that AnkR interacts with the cytoskeletal protein ß3 spectrin and the potassium channel Kv3.3. Loss of AnkR reduced somatic membrane levels of ß3 spectrin and Kv3.3 in Purkinje neurons. Thus, AnkR links Kv3.3 channels to the ß3 spectrin-based cytoskeleton. Our results may help explain why mutations in ß3 spectrin and Kv3.3 both cause spinocerebellar ataxia.SIGNIFICANCE STATEMENT Ankyrin scaffolding proteins localize and stabilize ion channels in the membrane by linking them to the spectrin-based cytoskeleton. Here, we show that Ankyrin-R (AnkR) links Kv3.3 K+ channels to the ß3 spectrin-based cytoskeleton in Purkinje neurons. Loss of AnkR causes Purkinje neuron degeneration, altered cerebellar physiology, and ataxia, which is consistent with mutations in Kv3.3 and ß3 spectrin causing spinocerebellar ataxia.


Asunto(s)
Ancirinas/metabolismo , Citoesqueleto/metabolismo , Células de Purkinje/metabolismo , Canales de Potasio Shaw/metabolismo , Espectrina/metabolismo , Animales , Supervivencia Celular/fisiología , Femenino , Masculino , Ratones , Ataxias Espinocerebelosas/genética
15.
Curr Biol ; 31(24): R1576-R1578, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34932966

RESUMEN

Internal models for movement are necessary for precise motor function. A new study in developing rats shows that an internal model emerges in the postnatal thalamus and depends on signals from the cerebellum.


Asunto(s)
Cerebelo , Tálamo , Animales , Movimiento , Ratas
16.
Elife ; 102021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34542409

RESUMEN

Preterm infants that suffer cerebellar insults often develop motor disorders and cognitive difficulty. Excitatory granule cells, the most numerous neuron type in the brain, are especially vulnerable and likely instigate disease by impairing the function of their targets, the Purkinje cells. Here, we use regional genetic manipulations and in vivo electrophysiology to test whether excitatory neurons establish the firing properties of Purkinje cells during postnatal mouse development. We generated mutant mice that lack the majority of excitatory cerebellar neurons and tracked the structural and functional consequences on Purkinje cells. We reveal that Purkinje cells fail to acquire their typical morphology and connectivity, and that the concomitant transformation of Purkinje cell firing activity does not occur either. We also show that our mutant pups have impaired motor behaviors and vocal skills. These data argue that excitatory cerebellar neurons define the maturation time-window for postnatal Purkinje cell functions and refine cerebellar-dependent behaviors.


Preterm infants have a higher risk of developing movement difficulties and neurodevelopmental conditions like autism spectrum disorder. This is likely caused by injuries to a part of the brain called the cerebellum. The cerebellum is important for movement, language and social interactions. During the final weeks of pregnancy, the cerebellum grows larger and develops a complex pattern of folds. Tiny granule cells, which are particularly vulnerable to harm, drive this development. Exactly how damage to granule cells causes movement difficulties and other conditions is unclear. One potential explanation may be that granule cells are important for the development of Purkinje cells in the brain. The Purkinje cells send and receive messages and are very important for coordinating movement. To learn more, van der Heijden et al. studied Purkinje cells in mice during a period that corresponds with the third trimester of pregnancy in humans. During this time, the pattern of electrical signals sent by the Purkinje cells changed from slow and irregular to fast and rhythmic with long pauses between bursts. However, mice that had been genetically engineered to lack most of their granule cells showed a completely different pattern of Purkinje cell development. The pattern of electrical signals emitted by these Purkinje cells stayed slow and irregular. Mice that lacked granule cells also had movement difficulties, tremors, and abnormal vocalizations. The experiments confirm that granule cells are essential for normal brain development. Without enough granule cells, the Purkinje cells become stuck in an immature state. This discovery may help physicians identify preterm infants with motor disorders and other conditions earlier. It may also lead to changes in the care of preterm infants designed to protect their granule cells.


Asunto(s)
Potenciales de Acción , Potenciales Postsinápticos Excitadores , Neurogénesis , Células de Purkinje/fisiología , Sinapsis/fisiología , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Linaje de la Célula , Eliminación de Gen , Ratones Noqueados , Actividad Motora , Células de Purkinje/metabolismo , Sinapsis/metabolismo , Factores de Tiempo , Proteína 1 de Transporte Vesicular de Glutamato/genética , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Vocalización Animal
17.
Dev Neurosci ; 43(3-4): 181-190, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33823515

RESUMEN

Autism spectrum disorders (ASD) comprise a group of heterogeneous neurodevelopmental conditions characterized by impaired social interactions and repetitive behaviors with symptom onset in early infancy. The genetic risks for ASD have long been appreciated: concordance of ASD diagnosis may be as high as 90% for monozygotic twins and 30% for dizygotic twins, and hundreds of mutations in single genes have been associated with ASD. Nevertheless, only 5-30% of ASD cases can be explained by a known genetic cause, suggesting that genetics is not the only factor at play. More recently, several studies reported that up to 40% of infants with cerebellar hemorrhages and lesions are diagnosed with ASD. These hemorrhages are overrepresented in severely premature infants, who are born during a period of highly dynamic cerebellar development that encompasses an approximately 5-fold size expansion, an increase in structural complexity, and remarkable rearrangements of local neural circuits. The incidence of ASD-causing cerebellar hemorrhages during this window supports the hypothesis that abnormal cerebellar development may be a primary risk factor for ASD. However, the links between developmental deficits in the cerebellum and the neurological dysfunctions underlying ASD are not completely understood. Here, we discuss key processes in cerebellar development, what happens to the cerebellar circuit when development is interrupted, and how impaired cerebellar function leads to social and cognitive impairments. We explore a central question: Is cerebellar development important for the generation of the social and cognitive brain or is the cerebellum part of the social and cognitive brain itself?


Asunto(s)
Trastorno del Espectro Autista , Trastorno del Espectro Autista/genética , Encéfalo , Cerebelo , Humanos , Lactante
18.
Nat Commun ; 12(1): 1295, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637754

RESUMEN

Deep brain stimulation (DBS) relieves motor dysfunction in Parkinson's disease, and other movement disorders. Here, we demonstrate the potential benefits of DBS in a model of ataxia by targeting the cerebellum, a major motor center in the brain. We use the Car8 mouse model of hereditary ataxia to test the potential of using cerebellar nuclei DBS plus physical activity to restore movement. While low-frequency cerebellar DBS alone improves Car8 mobility and muscle function, adding skilled exercise to the treatment regimen additionally rescues limb coordination and stepping. Importantly, the gains persist in the absence of further stimulation. Because DBS promotes the most dramatic improvements in mice with early-stage ataxia, we postulated that cerebellar circuit function affects stimulation efficacy. Indeed, genetically eliminating Purkinje cell neurotransmission blocked the ability of DBS to reduce ataxia. These findings may be valuable in devising future DBS strategies.


Asunto(s)
Ataxia Cerebelosa/metabolismo , Cerebelo/fisiología , Movimiento/fisiología , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Ataxia Cerebelosa/genética , Núcleos Cerebelosos/fisiología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Enfermedad de Parkinson , Células de Purkinje/fisiología , Transmisión Sináptica
19.
Neuroscience ; 462: 4-21, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-32554107

RESUMEN

Cerebellar development has a remarkably protracted morphogenetic timeline that is coordinated by multiple cell types. Here, we discuss the intriguing cellular consequences of interactions between inhibitory Purkinje cells and excitatory granule cells during embryonic and postnatal development. Purkinje cells are central to all cerebellar circuits, they are the first cerebellar cortical neurons to be born, and based on their cellular and molecular signaling, they are considered the master regulators of cerebellar development. Although rudimentary Purkinje cell circuits are already present at birth, their connectivity is morphologically and functionally distinct from their mature counterparts. The establishment of the Purkinje cell circuit with its mature firing properties has a temporal dependence on cues provided by granule cells. Granule cells are the latest born, yet most populous, neuronal type in the cerebellar cortex. They provide a combination of mechanical, molecular and activity-based cues that shape the maturation of Purkinje cell structure, connectivity and function. We propose that the wiring of Purkinje cells for function falls into two developmental phases: an initial phase that is guided by intrinsic mechanisms and a later phase that is guided by dynamically-acting cues, some of which are provided by granule cells. In this review, we highlight the mechanisms that granule cells use to help establish the unique properties of Purkinje cell firing.


Asunto(s)
Cerebelo , Células de Purkinje , Humanos , Recién Nacido , Interneuronas , Neurogénesis , Neuronas
20.
J Physiol ; 599(7): 2037-2054, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33369735

RESUMEN

KEY POINTS: Loss-of-function mutations in the Thap1 gene cause partially penetrant dystonia type 6 (DYT6). Some non-manifesting DYT6 mutation carriers have tremor and abnormal cerebello-thalamo-cortical signalling. We show that Thap1 heterozygote mice have action tremor, a reduction in cerebellar neuron number, and abnormal electrophysiological signals in the remaining neurons. These results underscore the importance of Thap1 levels for cerebellar function. These results uncover how cerebellar abnormalities contribute to different dystonia-associated motor symptoms. ABSTRACT: Loss-of-function mutations in the Thanatos-associated domain-containing apoptosis-associated protein 1 (THAP1) gene cause partially penetrant autosomal dominant dystonia type 6 (DYT6). However, the neural abnormalities that promote the resultant motor dysfunctions remain elusive. Studies in humans show that some non-manifesting DYT6 carriers have altered cerebello-thalamo-cortical function with subtle but reproducible tremor. Here, we uncover that Thap1 heterozygote mice have action tremor that rises above normal baseline values even though they do not exhibit overt dystonia-like twisting behaviour. At the neural circuit level, we show using in vivo recordings in awake Thap1+/- mice that Purkinje cells have abnormal firing patterns and that cerebellar nuclei neurons, which connect the cerebellum to the thalamus, fire at a lower frequency. Although the Thap1+/- mice have fewer Purkinje cells and cerebellar nuclei neurons, the number of long-range excitatory outflow projection neurons is unaltered. The preservation of interregional connectivity suggests that abnormal neural function rather than neuron loss instigates the network dysfunction and the tremor in Thap1+/- mice. Accordingly, we report an inverse correlation between the average firing rate of cerebellar nuclei neurons and tremor power. Our data show that cerebellar circuitry is vulnerable to Thap1 mutations and that cerebellar dysfunction may be a primary cause of tremor in non-manifesting DYT6 carriers and a trigger for the abnormal postures in manifesting patients.


Asunto(s)
Distonía , Animales , Proteínas Reguladoras de la Apoptosis , Proteínas de Unión al ADN , Distonía/genética , Humanos , Ratones , Proteínas Nucleares , Temblor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...