Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 218: 115924, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37972874

RESUMEN

Cannabinoid CB2 receptor (CB2R) is a class A G protein-coupled receptor (GPCR) involved in a broad spectrum of physiological processes and pathological conditions. For that reason, targeting CB2R might provide therapeutic opportunities in neurodegenerative disorders, neuropathic pain, inflammatory diseases, and cancer. The main components from Cannabis sativa, such as Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), have been therapeutically exploited and synthetically-derived analogs have been generated. One example is cannabidiol-dimethylheptyl (CBD-DMH), which exhibits anti-inflammatory effects. Nevertheless, its pharmacological mechanism of action is not yet fully understood and is hypothesized for multiple targets, including CB2R. The aim of this study was to further investigate the molecular pharmacology of CBD-DMH on CB2R while CBD was taken along as control. These compounds were screened in equilibrium and kinetic radioligand binding studies and various functional assays, including G protein activation, inhibition of cAMP production and ß-arrestin-2 recruitment. In dissociation studies, CBD-DMH allosterically modulated the radioligand binding. Furthermore, CBD-DMH negatively modulated the G protein activation of reference agonists CP55,940, AEA and 2-AG, but not the agonist-induced ß-arrestin-2 recruitment. Nevertheless, CBD-DMH also displayed competitive binding to CB2R and partial agonism on G protein activation, inhibition of cAMP production and ß-arrestin-2 recruitment. CBD did not exhibit such allosteric behavior and only very weakly bound CB2R without activation. This study shows a dual binding mode of CBD-DMH, but not CBD, to CB2R with the suggestion of two different binding sites. Altogether, it encourages further research into this dual mechanism which might provide a new class of molecules targeting CB2R.


Asunto(s)
Cannabidiol , Cannabidiol/farmacología , Receptores de Cannabinoides/metabolismo , beta-Arrestina 1/metabolismo , Proteínas de Unión al GTP/metabolismo , Receptor Cannabinoide CB2/metabolismo , Dronabinol , Receptor Cannabinoide CB1/metabolismo , Agonistas de Receptores de Cannabinoides
2.
Nat Commun ; 14(1): 1447, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922494

RESUMEN

Cannabinoid CB2 receptor (CB2R) agonists are investigated as therapeutic agents in the clinic. However, their molecular mode-of-action is not fully understood. Here, we report the discovery of LEI-102, a CB2R agonist, used in conjunction with three other CBR ligands (APD371, HU308, and CP55,940) to investigate the selective CB2R activation by binding kinetics, site-directed mutagenesis, and cryo-EM studies. We identify key residues for CB2R activation. Highly lipophilic HU308 and the endocannabinoids, but not the more polar LEI-102, APD371, and CP55,940, reach the binding pocket through a membrane channel in TM1-TM7. Favorable physico-chemical properties of LEI-102 enable oral efficacy in a chemotherapy-induced nephropathy model. This study delineates the molecular mechanism of CB2R activation by selective agonists and highlights the role of lipophilicity in CB2R engagement. This may have implications for GPCR drug design and sheds light on their activation by endogenous ligands.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Cannabinoides , Agonistas de Receptores de Cannabinoides/farmacología , Receptores de Cannabinoides , Cannabinoides/farmacología , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB2/genética
3.
Arch Pharm (Weinheim) ; 356(1): e2200451, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36310109

RESUMEN

Histamine H3 receptor (H3 R) agonists without an imidazole moiety remain very scarce. Of these, ZEL-H16 (1) has been reported previously as a high-affinity non-imidazole H3 R (partial) agonist. Our structure-activity relationship analysis using derivatives of 1 identified both basic moieties as key interaction motifs and the distance of these from the central core as a determinant for H3 R affinity. However, in spite of the reported H3 R (partial) agonism, in our hands, 1 acts as an inverse agonist for Gαi signaling in a CRE-luciferase reporter gene assay and using an H3 R conformational sensor. Inverse agonism was also observed for all of the synthesized derivatives of 1. Docking studies and molecular dynamics simulations suggest ionic interactions/hydrogen bonds to H3 R residues D1143.32 and E2065.46 as essential interaction points.


Asunto(s)
Histamina , Receptores Histamínicos H3 , Agonismo Inverso de Drogas , Ligandos , Agonistas de los Receptores Histamínicos/farmacología , Agonistas de los Receptores Histamínicos/química , Relación Estructura-Actividad , Receptores Histamínicos
4.
Eur J Med Chem ; 226: 113838, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34571173

RESUMEN

The P2X7 receptor (P2X7R) stands out among the purinergic receptors due to its strong involvement in the regulation of tumor growth and metastasis formation as well as in innate immune responses and afferent signal transmission. Numerous studies have pointed out the beneficial effects of P2X7R antagonism for the treatment of a variety of cancer types, inflammatory diseases, and chronic pain. Herein we describe the development of novel P2X7R antagonists, incorporating piperazine squaric diamides as a central element. Besides improving the antagonists' potency from pIC50 values of 5.7-7.6, ADME properties (logD7.4 value, plasma protein binding, in vitro metabolic stability) of the generated compounds were investigated and optimized to provide novel P2X7R antagonists with drug-like properties. Furthermore, docking studies revealed the antagonists binding to the allosteric binding pocket in two distinct binding poses, depending on the substitution of the central piperazine moiety.


Asunto(s)
Ciclobutanos/farmacología , Diamida/farmacología , Piperazina/farmacología , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X/metabolismo , Ciclobutanos/síntesis química , Ciclobutanos/química , Diamida/síntesis química , Diamida/química , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Estructura Molecular , Piperazina/síntesis química , Piperazina/química , Antagonistas del Receptor Purinérgico P2X/síntesis química , Antagonistas del Receptor Purinérgico P2X/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
5.
J Med Chem ; 64(5): 2608-2621, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33600174

RESUMEN

Covalently acting inhibitors constitute a large and growing fraction of approved small-molecule therapeutics as well as useful tools for a variety of in vitro and in vivo applications. Here, we aimed to develop a covalent antagonist of CC chemokine receptor 2 (CCR2), a class A GPCR that has been pursued as a therapeutic target in inflammation and immuno-oncology. Based on a known intracellularly binding CCR2 antagonist, several covalent derivatives were synthesized and characterized by radioligand binding and functional assays. These studies revealed compound 14 as an intracellular covalent ligand for CCR2. In silico modeling followed by site-directed mutagenesis confirmed that 14 forms a covalent bond with one of three proximal cysteine residues, which can be engaged interchangeably. To our knowledge, compound 14 represents the first covalent ligand reported for CCR2. Due to its unique properties, it may represent a promising tool for ongoing and future studies of CCR2 pharmacology.


Asunto(s)
Receptores CCR2/antagonistas & inhibidores , Sulfonamidas/farmacología , Animales , Sitios de Unión , Células CHO , Línea Celular Tumoral , Cricetulus , Cisteína/química , Diseño de Fármacos , Células HEK293 , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica , Receptores CCR2/genética , Receptores CCR2/metabolismo , Sulfonamidas/síntesis química , Sulfonamidas/metabolismo
6.
J Cheminform ; 11(1): 66, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33430920

RESUMEN

Drugs have become an essential part of our lives due to their ability to improve people's health and quality of life. However, for many diseases, approved drugs are not yet available or existing drugs have undesirable side effects, making the pharmaceutical industry strive to discover new drugs and active compounds. The development of drugs is an expensive process, which typically starts with the detection of candidate molecules (screening) after a protein target has been identified. To this end, the use of high-performance screening techniques has become a critical issue in order to palliate the high costs. Therefore, the popularity of computer-based screening (often called virtual screening or in silico screening) has rapidly increased during the last decade. A wide variety of Machine Learning (ML) techniques has been used in conjunction with chemical structure and physicochemical properties for screening purposes including (i) simple classifiers, (ii) ensemble methods, and more recently (iii) Multiple Classifier Systems (MCS). Here, we apply an MCS for virtual screening (D2-MCS) using circular fingerprints. We applied our technique to a dataset of cannabinoid CB2 ligands obtained from the ChEMBL database. The HTS collection of Enamine (1,834,362 compounds), was virtually screened to identify 48,232 potential active molecules using D2-MCS. Identified molecules were ranked to select 21 promising novel compounds for in vitro evaluation. Experimental validation confirmed six highly active hits (> 50% displacement at 10 µM and subsequent Ki determination) and an additional five medium active hits (> 25% displacement at 10 µM). Hence, D2-MCS provided a hit rate of 29% for highly active compounds and an overall hit rate of 52%.

7.
Metab Eng ; 47: 94-101, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29545148

RESUMEN

Valeriana officinalis (Valerian) root extracts have been used by European and Asian cultures for millennia for their anxiolytic and sedative properties. However, the efficacy of these extracts suffers from variable yields and composition, making these extracts a prime candidate for microbial production. Recently, valerenic acid, a C15 sesquiterpenoid, was identified as the active compound that modulates the GABAA channel. Although the first committed step, valerena-4,7(11)-diene synthase, has been identified and described, the complete valerenic acid biosynthetic pathway remains to be elucidated. Sequence homology and tissue-specific expression profiles of V. officinalis putative P450s led to the discovery of a V. officinalis valerena-4,7(11)-diene oxidase, VoCYP71DJ1, which required coexpression with a V. officinalis alcohol dehydrogenase and aldehyde dehydrogenase to complete valerenic acid biosynthesis in yeast. Further, we demonstrated the stable integration of all pathway enzymes in yeast, resulting in the production of 140 mg/L of valerena-4,7(11)-diene and 4 mg/L of valerenic acid in milliliter plates. These findings showcase Saccharomyces cerevisiae's potential as an expression platform for facilitating multiply-oxidized medicinal terpenoid pathway discovery, possibly paving the way for scale up and FDA approval of valerenic acid and other active compounds from plant-derived herbal medicines.


Asunto(s)
Hipnóticos y Sedantes/metabolismo , Indenos/metabolismo , Saccharomyces cerevisiae , Sesquiterpenos/metabolismo , Alcohol Deshidrogenasa/biosíntesis , Alcohol Deshidrogenasa/genética , Aldehído Deshidrogenasa/biosíntesis , Aldehído Deshidrogenasa/genética , Sistema Enzimático del Citocromo P-450/biosíntesis , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Valeriana/enzimología , Valeriana/genética
8.
Metab Eng ; 45: 142-148, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29247866

RESUMEN

Euphorbiaceae are an important source of medically important diterpenoids, such as the anticancer drug ingenol-3-angelate and the antiretroviral drug prostratin. However, extraction from the genetically intractable natural producers is often limited by the small quantities produced, while the organic synthesis of terpene-derived drugs is challenging and similarly low-yielding. While transplanting the biosynthetic pathway into a heterologous host has proven successful for some drugs, it has been largely unsuccessful for diterpenoids due to their elaborate biosynthetic pathways and lack of genetic resources and tools for gene discovery. We engineered casbene precursor production in S. cerevisiae, verified the ability of six Euphorbia lathyris and Jatropha curcas cytochrome P450s to oxidize casbene, and optimized the expression of these P450s and an alcohol dehydrogenase to generate jolkinol C, achieving ~800mg/L of jolkinol C and over 1g/L total oxidized casbanes in millititer plates, the highest titer of oxidized diterpenes in yeast reported to date. This strain enables the semisynthesis of biologically active jolkinol C derivatives and will be an important tool in the elucidation of the biosynthetic pathways for ingenanes, tiglianes, and lathyranes. These findings demonstrate the ability of S. cerevisiae to produce oxidized drug precursors in quantities that are sufficient for drug development and pathway discovery.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Diterpenos/metabolismo , Euphorbia/genética , Jatropha/genética , Microorganismos Modificados Genéticamente , Proteínas de Plantas , Saccharomyces cerevisiae , Sistema Enzimático del Citocromo P-450/biosíntesis , Sistema Enzimático del Citocromo P-450/genética , Euphorbia/enzimología , Jatropha/enzimología , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...