Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biochem J ; 481(5): 387-403, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38373073

RESUMEN

The dynamic nature of the microtubule network is dependent in part by post-translational modifications (PTMs) - particularly through acetylation, which stabilizes the microtubule network. Whether PTMs of the microtubule network in vascular smooth muscle cells (VSMCs) contribute to the pathophysiology of hypertension is unknown. The aim of this study was to determine the acetylated state of the microtubule network in the mesenteric arteries of spontaneously hypertensive rats (SHR). Experiments were performed on male normotensive rats and SHR mesenteric arteries. Western blotting and mass spectrometry determined changes in tubulin acetylation. Wire myography was used to investigate the effect of tubacin on isoprenaline-mediated vasorelaxations. Isolated cells from normotensive rats were used for scanning ion conductance microscopy (SICM). Mass spectrometry and Western blotting showed that tubulin acetylation is increased in the mesenteric arteries of the SHR compared with normotensive rats. Tubacin enhanced the ß-adrenoceptor-mediated vasodilatation by isoprenaline when the endothelium was intact, but attenuated relaxations when the endothelium was denuded or nitric oxide production was inhibited. By pre-treating vessels with colchicine to disrupt the microtubule network, we were able to confirm that the effects of tubacin were microtubule-dependent. Using SICM, we examined the cell surface Young's modulus of VSMCs, but found no difference in control, tubacin-treated, or taxol-treated cells. Acetylation of tubulin at Lys40 is elevated in mesenteric arteries from the SHR. Furthermore, this study shows that tubacin has an endothelial-dependent bimodal effect on isoprenaline-mediated vasorelaxation.


Asunto(s)
Anilidas , Ácidos Hidroxámicos , Hipertensión , Tubulina (Proteína) , Ratas , Animales , Masculino , Ratas Endogámicas WKY , Acetilación , Isoproterenol/farmacología , Ratas Endogámicas SHR , Arterias Mesentéricas , Vasodilatación , Microtúbulos , Endotelio Vascular/fisiología
2.
Br J Clin Pharmacol ; 89(7): 2179-2189, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36764326

RESUMEN

AIMS: The aim of this study is to examine whether colchicine improves ß adrenoceptor-mediated vasodilation in humans by conducting a double-blinded, placebo-controlled intervention study. Colchicine treatment has known beneficial effects on cardiovascular health and reduces the incidence of cardiovascular disease. Studies in isolated rodent arteries have shown that colchicine can enhance ß adrenoceptor-mediated vasodilation, but this has not been determined in humans. METHODS: Middle-aged men with essential hypertension were randomly assigned firstly to acute treatment with either 0.5 mg colchicine (n = 19) or placebo (n = 12). They were subsequently re-randomized for 3 weeks of treatment with either colchicine 0.5 mg twice daily (n = 16) or placebo (n = 15) followed by a washout period of 48-72 h. The vasodilator responses to isoprenaline, acetylcholine and sodium nitroprusside were determined as well as arterial pressure, arterial compliance and plasma inflammatory markers. RESULTS: Acute colchicine treatment increased isoprenaline (by 38% for the highest dose) as well as sodium nitroprusside (by 29% main effect) -induced vasodilation but had no effect on the response to acetylcholine. The 3-week colchicine treatment followed by a washout period did not induce an accumulated or sustained effect on the ß adrenoceptor response, and there was no effect on arterial pressure, arterial compliance or the level of measured inflammatory markers. CONCLUSION: Colchicine acutely enhances ß adrenoceptor- and nitric oxide-mediated changes in vascular conductance in humans, supporting that the mechanism previously demonstrated in rodents, translates to humans. The results provide novel translational evidence for a transient enhancing effect of colchicine on ß adrenoceptor-mediated vasodilation in humans with essential hypertension. CONDENSED ABSTRACT: Preclinical studies in isolated rodent arteries have shown that colchicine can enhance ß adrenoceptor-mediated vasodilation. Here we show that this effect of colchicine can be translated to humans. Acute colchicine treatment was found to increase both isoprenaline- and sodium nitroprusside-induced vasodilation. The study provides the first translational evidence for a transient ß adrenoceptor-mediated vasodilatory effect of colchicine in humans. The finding of an acute effect suggests that it may be clinically important to maintain an adequate bioavailability of colchicine.


Asunto(s)
Acetilcolina , Vasodilatación , Masculino , Persona de Mediana Edad , Humanos , Nitroprusiato/farmacología , Isoproterenol/farmacología , Acetilcolina/farmacología , Colchicina/farmacología , Hipertensión Esencial , Receptores Adrenérgicos
3.
FASEB J ; 36(9): e22457, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35997997

RESUMEN

Tree and shrub barks have been used as folk medicine by numerous cultures across the globe for millennia, for a variety of indications, including as vasorelaxants and antispasmodics. Here, using electrophysiology and myography, we discovered that the KCNQ5 voltage-gated potassium channel mediates vascular smooth muscle relaxant effects of barks used in Native American folk medicine. Bark extracts (1%) from Birch, Cramp Bark, Slippery Elm, White Oak, Red Willow, White Willow, and Wild Cherry each strongly activated KCNQ5 expressed in Xenopus oocytes. Testing of a subset including both the most and the least efficacious extracts revealed that Red Willow, White Willow, and White Oak KCNQ-dependently relaxed rat mesenteric arteries; in contrast, Black Haw bark neither activated KCNQ5 nor induced vasorelaxation. Two compounds common to the active barks (gallic acid and tannic acid) had similarly potent and efficacious effects on both KCNQ5 activation and vascular relaxation, and this together with KCNQ5 modulation by other tannins provides a molecular basis for smooth muscle relaxation effects of Native American folk medicine bark extracts.


Asunto(s)
Canales de Potasio KCNQ , Vasodilatadores , Animales , Humanos , Arterias Mesentéricas , Ratas , Taninos/farmacología , Vasodilatadores/farmacología , Indio Americano o Nativo de Alaska
4.
Hypertension ; 79(10): 2214-2227, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35929419

RESUMEN

BACKGROUND: The voltage-gated potassium channel (Kv)7.4 and Kv7.5 channels contribute to the ß-adrenoceptor-mediated vasodilatation. In arteries from hypertensive rodents, the Kv7.4 channel is downregulated and function attenuated, which contributes to the reduced ß-adrenoceptor-mediated vasodilatation observed in these arteries. Recently, we showed that disruption of the microtubule network, with colchicine, or inhibition of the microtubule motor protein, dynein, with ciliobrevin D, enhanced the membrane abundance and function of Kv7.4 channels in rat mesenteric arteries. This study aimed to determine whether these pharmacological compounds can improve Kv7.4 function in third-order mesenteric arteries from the spontaneously hypertensive rat, thereby restoring the ß-adrenoceptor-mediated vasodilatation. METHODS: Wire and intravital myography was performed on normotensive and hypertensive male rat mesenteric arteries and immunostaining was performed on isolated smooth muscle cells from the same arteries. RESULTS: Using wire and intravital microscopy, we show that ciliobrevin D enhanced the ß-adrenoceptor-mediated vasodilatation by isoprenaline. This effect was inhibited partially by the Kv7 channel blocker linopirdine and was dependent on an increased functional contribution of the ß2-adrenoceptor to the isoprenaline-mediated relaxation. In mesenteric arteries from the spontaneously hypertensive rat, ciliobrevin D and colchicine both improved the isoprenaline-mediated vasorelaxation and relaxation to the Kv7.2 -7.5 activator, ML213. Immunostaining confirmed ciliobrevin D enhanced the membrane abundance of Kv7.4. As well as an increase in the function of Kv7.4, the functional changes were associated with an increase in the contribution of ß2-adrenoceptor following isoprenaline treatment. Immunostaining experiments showed ciliobrevin D prevented isoprenaline-mediated internalizationof the ß2-adrenoceptor. CONCLUSIONS: Overall, these data show that colchicine and ciliobrevin D can induce a ß2-adrenoceptor-mediated vasodilatation in arteries from the spontaneously hypertensive rat as well as reinstating Kv7.4 channel function.


Asunto(s)
Dineínas , Hipertensión , Receptores Adrenérgicos beta 2/metabolismo , Animales , Colchicina/farmacología , Dineínas/metabolismo , Dineínas/farmacología , Isoproterenol/farmacología , Masculino , Arterias Mesentéricas , Ratas , Ratas Endogámicas SHR , Receptores Adrenérgicos/metabolismo , Vasodilatación/fisiología
5.
Physiol Rep ; 9(23): e15133, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34851043

RESUMEN

The vasoconstrictive effect of sympathetic activity is attenuated in contracting skeletal muscle (functional sympatholysis), allowing increased blood supply to the working muscle but the underlying mechanisms are incompletely understood. The purpose of this study was to examine α-adrenergic receptor responsiveness in isolated artery segments from non-exercised and exercised mice, using wire myography. Isometric tension recordings performed on femoral artery segments from exercised mice showed decreased α-adrenergic receptor responsiveness compared to non-exercised mice (logEC50 -5.2 ± 0.04 M vs. -5.7 ± 0.08 M, respectively). In contrast, mesenteric artery segments from exercised mice displayed similar α-adrenergic receptor responses compared to non-exercised mice. Responses to the vasoconstrictor serotonin (5-HT) and vasodilator isoprenaline, were similar in femoral artery segments from non-exercised and exercised mice. To study sarcoplasmic reticulum (SR) function, we examined arterial contractions induced by caffeine, which depletes SR Ca2+ and thapsigargin, which inhibits SR Ca2+ -ATPase (SERCA) and SR Ca2+ uptake. Arterial contractions to both caffeine and thapsigargin were increased in femoral artery segment from exercised compared to non-exercised mice. Furthermore, 3D electron microscopy imaging of the arterial wall showed SR volume/length ratio increased 157% in smooth muscle cells of the femoral artery from the exercised mice, whereas there was no difference in SR volume/length ratio in mesenteric artery segments. These results show that in arteries surrounding exercising muscle, the α-adrenergic receptor constrictions are blunted, which can be attributed to swollen smooth muscle cell SR's, likely due to increased Ca2+ content that is possibly reducing free intracellular Ca2+ available for contraction. Overall, this study uncovers a previously unknown mechanism underlying functional sympatholysis.


Asunto(s)
Arterias Mesentéricas/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Condicionamiento Físico Animal/fisiología , Retículo Sarcoplasmático/efectos de los fármacos , Animales , Cafeína/farmacología , Calcio/metabolismo , Arterias Mesentéricas/metabolismo , Ratones , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Miografía , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Simpaticolíticos/farmacología , Vasoconstrictores/farmacología
6.
J Gen Physiol ; 153(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33533890

RESUMEN

The dynein motor protein transports proteins away from the cell membrane along the microtubule network. Recently, we found the microtubule network was important for regulating the membrane abundance of voltage-gated Kv7.4 potassium channels in vascular smooth muscle. Here, we aimed to investigate the influence of dynein on the microtubule-dependent internalization of the Kv7.4 channel. Patch-clamp recordings from HEK293B cells showed Kv7.4 currents were increased after inhibiting dynein function with ciliobrevin D or by coexpressing p50/dynamitin, which specifically interferes with dynein motor function. Mutation of a dynein-binding site in the Kv7.4 C terminus increased the Kv7.4 current and prevented p50 interference. Structured illumination microscopy, proximity ligation assays, and coimmunoprecipitation showed colocalization of Kv7.4 and dynein in mesenteric artery myocytes. Ciliobrevin D enhanced mesenteric artery relaxation to activators of Kv7.2-Kv7.5 channels and increased membrane abundance of Kv7.4 protein in isolated smooth muscle cells and HEK293B cells. Ciliobrevin D failed to enhance the negligible S-1-mediated relaxations after morpholino-mediated knockdown of Kv7.4. Mass spectrometry revealed an interaction of dynein with caveolin-1, confirmed using proximity ligation and coimmunoprecipitation assays, which also provided evidence for interaction of caveolin-1 with Kv7.4, confirming that Kv7.4 channels are localized to caveolae in mesenteric artery myocytes. Lastly, cholesterol depletion reduced the interaction of Kv7.4 with caveolin-1 and dynein while increasing the overall membrane expression of Kv7.4, although it attenuated the Kv7.4 current in oocytes and interfered with the action of ciliobrevin D and channel activators in arterial segments. Overall, this study shows that dynein can traffic Kv7.4 channels in vascular smooth muscle in a mechanism dependent on cholesterol-rich caveolae.


Asunto(s)
Dineínas , Canales de Potasio KCNQ , Membrana Celular , Músculo Liso Vascular , Miocitos del Músculo Liso
7.
Front Physiol ; 11: 727, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32695022

RESUMEN

Voltage-gated Kv7 potassium channels, encoded by KCNQ genes, have major physiological impacts cardiac myocytes, neurons, epithelial cells, and smooth muscle cells. Cyclic adenosine monophosphate (cAMP), a well-known intracellular secondary messenger, can activate numerous downstream effector proteins, generating downstream signaling pathways that regulate many functions in cells. A role for cAMP in ion channel regulation has been established, and recent findings show that cAMP signaling plays a role in Kv7 channel regulation. Although cAMP signaling is recognized to regulate Kv7 channels, the precise molecular mechanism behind the cAMP-dependent regulation of Kv7 channels is complex. This review will summarize recent research findings that support the mechanisms of cAMP-dependent regulation of Kv7 channels.

8.
Arterioscler Thromb Vasc Biol ; 40(5): 1207-1219, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32188278

RESUMEN

OBJECTIVE: Intravenous acetaminophen/paracetamol (APAP) is well documented to cause hypotension. Since the patients receiving intravenous APAP are usually critically ill, any severe hemodynamic changes, as with those associated with APAP, can be life-threatening. The mechanism underlying this dangerous iatrogenic effect of APAP was unknown. Approach and Results: Here, we show that intravenous APAP caused transient hypotension in rats, which was attenuated by the Kv7 channel blocker, linopirdine. APAP metabolite N-acetyl-p-benzoquinone imine caused vasodilatation of rat mesenteric arteries ex vivo. This vasodilatation was sensitive to linopirdine and also the calcitonin gene-related peptide antagonist, BIBN 4096. Further investigation revealed N-acetyl-p-benzoquinone imine stimulates calcitonin gene-related peptide release from perivascular nerves, causing a cAMP-dependent activation of Kv7 channels. We also show that N-acetyl-p-benzoquinone imine enhances Kv7.4 and Kv7.5 channels overexpressed in oocytes, suggesting that it can activate Kv7.4 and Kv7.5 channels directly, to elicit vasodilatation. CONCLUSIONS: Direct and indirect activation of Kv7 channels by the APAP metabolite N-acetyl-p-benzoquinone imine decreases arterial tone, which can lead to a drop in blood pressure. Our findings provide a molecular mechanism and potential preventive intervention for the clinical phenomenon of intravenous APAP-dependent transient hypotension.


Asunto(s)
Acetaminofén/toxicidad , Presión Sanguínea/efectos de los fármacos , Hipotensión/inducido químicamente , Canales de Potasio KCNQ/agonistas , Arterias Mesentéricas/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Acetaminofén/metabolismo , Animales , Benzoquinonas , Hipotensión/metabolismo , Hipotensión/fisiopatología , Iminas , Canales de Potasio KCNQ/genética , Canales de Potasio KCNQ/metabolismo , Masculino , Potenciales de la Membrana , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/fisiopatología , Ratas Wistar , Transducción de Señal , Xenopus laevis
9.
Proc Natl Acad Sci U S A ; 116(42): 21236-21245, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31570602

RESUMEN

Botanical folk medicines have been used throughout human history to treat common disorders such as hypertension, often with unknown underlying mechanisms. Here, we discovered that hypotensive folk medicines from a genetically diverse range of plant species each selectively activated the vascular-expressed KCNQ5 potassium channel, a feature lacking in the modern synthetic pharmacopeia, whereas nonhypotensive plant extracts did not. Analyzing constituents of the hypotensive Sophora flavescens root, we found that the quinolizidine alkaloid aloperine is a KCNQ-dependent vasorelaxant that potently and isoform-selectively activates KCNQ5 by binding near the foot of the channel voltage sensor. Our findings reveal that KCNQ5-selective activation is a defining molecular mechanistic signature of genetically diverse traditional botanical hypotensives, transcending plant genus and human cultural boundaries. Discovery of botanical KCNQ5-selective potassium channel openers may enable future targeted therapies for diseases including hypertension and KCNQ5 loss-of-function encephalopathy.


Asunto(s)
Canales de Potasio KCNQ/metabolismo , Animales , Masculino , Medicina Tradicional/métodos , Raíces de Plantas/química , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA