RESUMEN
BACKGROUND: Exercise-induced physiological cardiac growth regulators may protect the heart from ischemia/reperfusion (I/R) injury. Homeobox-containing 1 (Hmbox1), a homeobox family member, has been identified as a putative transcriptional repressor and is downregulated in the exercised heart. However, its roles in exercise-induced physiological cardiac growth and its potential protective effects against cardiac I/R injury remain largely unexplored. METHODS: We studied the function of Hmbox1 in exercise-induced physiological cardiac growth in mice after 4 weeks of swimming exercise. Hmbox1 expression was then evaluated in human heart samples from deceased patients with myocardial infarction and in the animal cardiac I/R injury model. Its role in cardiac I/R injury was examined in mice with adeno-associated virus 9 (AAV9) vector-mediated Hmbox1 knockdown and in those with cardiac myocyte-specific Hmbox1 ablation. We performed RNA sequencing, promoter prediction, and binding assays and identified glucokinase (Gck) as a downstream effector of Hmbox1. The effects of Hmbox1 together with Gck were examined in cardiomyocytes to evaluate their cell size, proliferation, apoptosis, mitochondrial respiration, and glycolysis. The function of upstream regulator of Hmbox1, ETS1, was investigated through ETS1 overexpression in cardiac I/R mice in vivo. RESULTS: We demonstrated that Hmbox1 downregulation was required for exercise-induced physiological cardiac growth. Inhibition of Hmbox1 increased cardiomyocyte size in isolated neonatal rat cardiomyocytes and human embryonic stem cell-derived cardiomyocytes but did not affect cardiomyocyte proliferation. Under pathological conditions, Hmbox1 was upregulated in both human and animal postinfarct cardiac tissues. Furthermore, both cardiac myocyte-specific Hmbox1 knockout and AAV9-mediated Hmbox1 knockdown protected against cardiac I/R injury and heart failure. Therapeutic effects were observed when sh-Hmbox1 AAV9 was administered after I/R injury. Inhibition of Hmbox1 activated the Akt/mTOR/P70S6K pathway and transcriptionally upregulated Gck, leading to reduced apoptosis and improved mitochondrial respiration and glycolysis in cardiomyocytes. ETS1 functioned as an upstream negative regulator of Hmbox1 transcription, and its overexpression was protective against cardiac I/R injury. CONCLUSIONS: Our studies unravel a new role for the transcriptional repressor Hmbox1 in exercise-induced physiological cardiac growth. They also highlight the therapeutic potential of targeting Hmbox1 to improve myocardial survival and glucose metabolism after I/R injury.
Asunto(s)
Glucosa , Proteínas de Homeodominio , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Animales , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Humanos , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/prevención & control , Ratones , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Glucosa/metabolismo , Glucosa/deficiencia , Masculino , Supervivencia Celular , Ratas , Ratones Endogámicos C57BL , Glucólisis , Transducción de Señal , Apoptosis , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/genéticaRESUMEN
Inhibition of pathological cardiac hypertrophy is recognized as an important therapeutic strategy for heart failure, although effective targets are still lacking in clinical practice. Homeodomain interacting protein kinase 1 (HIPK1) is a conserved serine/threonine kinase that can respond to different stress signals, however, whether and how HIPK1 regulates myocardial function is not reported. Here, it is observed that HIPK1 is increased during pathological cardiac hypertrophy. Both genetic ablation and gene therapy targeting HIPK1 are protective against pathological hypertrophy and heart failure in vivo. Hypertrophic stress-induced HIPK1 is present in the nucleus of cardiomyocytes, while HIPK1 inhibition prevents phenylephrine-induced cardiomyocyte hypertrophy through inhibiting cAMP-response element binding protein (CREB) phosphorylation at Ser271 and inactivating CCAAT/enhancer-binding protein ß (C/EBPß)-mediated transcription of pathological response genes. Inhibition of HIPK1 and CREB forms a synergistic pathway in preventing pathological cardiac hypertrophy. In conclusion, HIPK1 inhibition may serve as a promising novel therapeutic strategy to attenuate pathological cardiac hypertrophy and heart failure.
Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Insuficiencia Cardíaca , Humanos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Cardiomegalia/prevención & control , Cardiomegalia/genética , Miocitos Cardíacos , Proteínas Serina-Treonina Quinasas/metabolismo , Insuficiencia Cardíaca/metabolismoRESUMEN
Arrhythmogenic cardiomyopathy (ACM) is an inherited progressive cardiac disease. Many patients with ACM harbor mutations in desmosomal genes, predominantly in plakophilin-2 (PKP2). Although the genetic basis of ACM is well characterized, the underlying disease-driving mechanisms remain unresolved. Explanted hearts from patients with ACM had less PKP2 compared with healthy hearts, which correlated with reduced expression of desmosomal and adherens junction (AJ) proteins. These proteins were also disorganized in areas of fibrotic remodeling. In vitro data from human-induced pluripotent stem cell-derived cardiomyocytes and microtissues carrying the heterozygous PKP2 c.2013delC pathogenic mutation also displayed impaired contractility. Knockin mice carrying the equivalent heterozygous Pkp2 c.1755delA mutation recapitulated changes in desmosomal and AJ proteins and displayed cardiac dysfunction and fibrosis with age. Global proteomics analysis of 4-month-old heterozygous Pkp2 c.1755delA hearts indicated involvement of the ubiquitin-proteasome system (UPS) in ACM pathogenesis. Inhibition of the UPS in mutant mice increased area composita proteins and improved calcium dynamics in isolated cardiomyocytes. Additional proteomics analyses identified lysine ubiquitination sites on the desmosomal proteins, which were more ubiquitinated in mutant mice. In summary, we show that a plakophilin-2 mutation can lead to decreased desmosomal and AJ protein expression through a UPS-dependent mechanism, which preceded cardiac remodeling. These findings suggest that targeting protein degradation and improving desmosomal protein stability may be a potential therapeutic strategy for the treatment of ACM.
Asunto(s)
Cardiomiopatías , Placofilinas , Humanos , Ratones , Animales , Lactante , Proteolisis , Placofilinas/genética , Placofilinas/metabolismo , Miocitos Cardíacos/metabolismo , Mutación/genética , Cardiomiopatías/genéticaRESUMEN
Arrhythmogenic cardiomyopathy (ACM) is an inherited progressive disease characterized by electrophysiological and structural remodeling of the ventricles. However, the disease-causing molecular pathways, as a consequence of desmosomal mutations, are poorly understood. Here, we identified a novel missense mutation within desmoplakin in a patient clinically diagnosed with ACM. Using CRISPR-Cas9, we corrected this mutation in patient-derived human induced pluripotent stem cells (hiPSCs) and generated an independent knockin hiPSC line carrying the same mutation. Mutant cardiomyocytes displayed a decline in connexin 43, NaV1.5, and desmosomal proteins, which was accompanied by a prolonged action potential duration. Interestingly, paired-like homeodomain 2 (PITX2), a transcription factor that acts a repressor of connexin 43, NaV1.5, and desmoplakin, was induced in mutant cardiomyocytes. We validated these results in control cardiomyocytes in which PITX2 was either depleted or overexpressed. Importantly, knockdown of PITX2 in patient-derived cardiomyocytes is sufficient to restore the levels of desmoplakin, connexin 43, and NaV1.5.
Asunto(s)
Cardiomiopatías , Células Madre Pluripotentes Inducidas , Humanos , Miocitos Cardíacos/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , MutaciónRESUMEN
AIMS: Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac disorder that is characterized by progressive loss of myocardium that is replaced by fibro-fatty cells, arrhythmias, and sudden cardiac death. While myocardial degeneration and fibro-fatty replacement occur in specific locations, the underlying molecular changes remain poorly characterized. Here, we aim to delineate local changes in gene expression to identify new genes and pathways that are relevant for specific remodelling processes occurring during ACM. METHODS AND RESULTS: Using Tomo-Seq, genome-wide transcriptional profiling with high spatial resolution, we created transmural epicardial-to-endocardial gene expression atlases of explanted ACM hearts to gain molecular insights into disease-driving processes. This enabled us to link gene expression profiles to the different regional remodelling responses and allowed us to identify genes that are potentially relevant for disease progression. In doing so, we identified distinct gene expression profiles marking regions of cardiomyocyte degeneration and fibro-fatty remodelling and revealed Zinc finger and BTB domain-containing protein 11 (ZBTB11) to be specifically enriched at sites of active fibro-fatty replacement of myocardium. Immunohistochemistry indicated ZBTB11 to be induced in cardiomyocytes flanking fibro-fatty areas, which could be confirmed in multiple cardiomyopathy patients. Forced overexpression of ZBTB11 induced autophagy and cell death-related gene programmes in human cardiomyocytes, leading to increased apoptosis. CONCLUSION: Our study shows the power of Tomo-Seq to unveil new molecular mechanisms in human cardiomyopathy and uncovers ZBTB11 as a novel driver of cardiomyocyte loss.
Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Cardiomiopatías , Humanos , Arritmias Cardíacas/metabolismo , Displasia Ventricular Derecha Arritmogénica/genética , Displasia Ventricular Derecha Arritmogénica/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , TranscriptomaRESUMEN
Hypertrophic cardiomyopathy (HCM) is a genetic heart disease that is characterized by unexplained segmental hypertrophy that is usually most pronounced in the septum. While sarcomeric gene mutations are often the genetic basis for HCM, the mechanistic origin for the heterogeneous remodeling remains largely unknown. A better understanding of the gene networks driving the cardiomyocyte (CM) hypertrophy is required to improve therapeutic strategies. Patients suffering from HCM often receive a septal myectomy surgery to relieve outflow tract obstruction due to hypertrophy. Using single-cell RNA sequencing (scRNA-seq) on septal myectomy samples from patients with HCM, we identify functional links between genes, transcription factors, and cell size relevant for HCM. The data show the utility of using scRNA-seq on the human hypertrophic heart, highlight CM heterogeneity, and provide a wealth of insights into molecular events involved in HCM that can eventually contribute to the development of enhanced therapies.
Asunto(s)
Cardiomiopatía Hipertrófica , Cardiopatías Congénitas , Cardiomiopatía Hipertrófica/genética , Humanos , Hipertrofia , Sarcómeros , Transcriptoma/genéticaRESUMEN
The phospholamban (PLN) p.Arg14del mutation causes dilated cardiomyopathy, with the molecular disease mechanisms incompletely understood. Patient dermal fibroblasts were reprogrammed to hiPSC, isogenic controls were established by CRISPR/Cas9, and cardiomyocytes were differentiated. Mutant cardiomyocytes revealed significantly prolonged Ca2+ transient decay time, Ca2+ -load dependent irregular beating pattern, and lower force. Proteomic analysis revealed less endoplasmic reticulum (ER) and ribosomal and mitochondrial proteins. Electron microscopy showed dilation of the ER and large lipid droplets in close association with mitochondria. Follow-up experiments confirmed impairment of the ER/mitochondria compartment. PLN p.Arg14del end-stage heart failure samples revealed perinuclear aggregates positive for ER marker proteins and oxidative stress in comparison with ischemic heart failure and non-failing donor heart samples. Transduction of PLN p.Arg14del EHTs with the Ca2+ -binding proteins GCaMP6f or parvalbumin improved the disease phenotype. This study identified impairment of the ER/mitochondria compartment without SR dysfunction as a novel disease mechanism underlying PLN p.Arg14del cardiomyopathy. The pathology was improved by Ca2+ -scavenging, suggesting impaired local Ca2+ cycling as an important disease culprit.
Asunto(s)
Trasplante de Corazón , Miocitos Cardíacos , Proteínas de Unión al Calcio/metabolismo , Retículo Endoplásmico , Humanos , Mitocondrias , Mutación , Miocitos Cardíacos/metabolismo , Proteómica , Donantes de TejidosRESUMEN
BACKGROUND: Surviving cells in the postinfarction border zone are subjected to intense fluctuations of their microenvironment. Recently, border zone cardiomyocytes have been specifically implicated in cardiac regeneration. Here, we defined their unique transcriptional and regulatory properties, and comprehensively validated new molecular markers, including Nppb, encoding B-type natriuretic peptide, after infarction. METHODS: Transgenic reporter mice were used to identify the Nppb-positive border zone after myocardial infarction. Transcriptome analysis of remote, border, and infarct zones and of purified cardiomyocyte nuclei was performed using RNA-sequencing. Top candidate genes displaying border zone spatial specificity were histologically validated in ischemic human hearts. Mice in which Nppb was deleted by genome editing were subjected to myocardial infarction. Chromatin accessibility landscapes of border zone and control cardiomyocyte nuclei were assessed by using assay for transposase-accessible chromatin using sequencing. RESULTS: We identified the border zone as a spatially confined region transcriptionally distinct from the remote myocardium. The transcriptional response of the border zone was much stronger than that of the remote ventricular wall, involving acute downregulation of mitochondrial oxidative phosphorylation, fatty acid metabolism, calcium handling, and sarcomere function, and the activation of a stress-response program. Analysis of infarcted human hearts revealed that the transcriptionally discrete border zone is conserved in humans, and led to the identification of novel conserved border zone markers including NPPB, ANKRD1, DES, UCHL1, JUN, and FOXP1. Homozygous Nppb mutant mice developed acute and lethal heart failure after myocardial infarction, indicating that B-type natriuretic peptide is required to preserve postinfarct heart function. Assay for transposase-accessible chromatin using sequencing revealed thousands of cardiomyocyte lineage-specific MEF2-occupied regulatory elements that lost accessibility in the border zone. Putative injury-responsive enhancers that gained accessibility were highly associated with AP-1 (activator protein 1) binding sites. Nuclear c-Jun, a component of AP-1, was observed specifically in border zone cardiomyocytes. CONCLUSIONS: Cardiomyocytes in a discrete zone bordering the infarct switch from a MEF2-driven homeostatic lineage-specific to an AP-1-driven injury-induced gene expression program. This program is conserved between mouse and human, and includes Nppb expression, which is required to prevent acute heart failure after infarction.
Asunto(s)
Factores de Transcripción MEF2/genética , Infarto del Miocardio/genética , Miocitos Cardíacos/fisiología , Receptores del Factor Natriurético Atrial/genética , Factor de Transcripción AP-1/genética , Animales , Diferenciación Celular , Linaje de la Célula , Microambiente Celular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Infarto del Miocardio/patología , Receptores del Factor Natriurético Atrial/metabolismo , Regeneración/genéticaRESUMEN
Increased plaque vascularization is causatively associated with the progression of unstable atherosclerotic vessel disease. We investigated the safety and efficacy of heat-generating radiofrequency ablation (RFA) in reducing the number of vessels in the plaque and adventitia and its effect on plaque size and composition. To this end, New Zealand White rabbits were fed a cholesterol-enriched diet and subjected to balloon denudation of the infrarenal aorta to induce atherosclerotic plaque formation. After 13 weeks, the proximal or distal half of the infrarenal aorta was exposed to transluminal RFA. The untreated half served as an intra-individual control. Optical coherence tomography (OCT) was performed directly after RFA. We found that RFA on the rabbit atherosclerotic plaque is safe and leads to decreased intraplaque vessel density and smooth muscle cell content but does not affect other components of plaque composition or size.
Asunto(s)
Aorta Abdominal/cirugía , Enfermedades de la Aorta/cirugía , Aterosclerosis/cirugía , Ablación por Catéter , Placa Aterosclerótica , Angioplastia de Balón , Animales , Aorta Abdominal/diagnóstico por imagen , Aorta Abdominal/patología , Enfermedades de la Aorta/diagnóstico por imagen , Enfermedades de la Aorta/etiología , Enfermedades de la Aorta/patología , Aortografía , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/etiología , Aterosclerosis/patología , Colesterol en la Dieta , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Masculino , Músculo Liso Vascular/patología , Músculo Liso Vascular/cirugía , Miocitos del Músculo Liso/patología , Neovascularización Patológica , Prueba de Estudio Conceptual , Conejos , Factores de Tiempo , Tomografía de Coherencia ÓpticaRESUMEN
OBJECTIVE: Atherosclerotic disease might hamper the efficacy of the Excimer laser-assisted Trinity Clip anastomotic connector in coronary arteries. Therefore, its efficacy was evaluated on human diseased coronary arteries (study 1). In addition, the acute laser effects onto the coronary wall were assessed (study 2). METHODS: Thirty-eight anastomoses were constructed on ex vivo human hearts. Atherosclerosis was histopathologically determined and subsequently related to the success of the technique (ie, connector positioning and laser punching; study 1). In addition, 20 anastomoses were constructed in an ex vivo (porcine, n = 8) and an in vivo [rabbit (n = 9) and porcine (n = 3)] model. Subsequently, the coronary was histologically studied on the presence of laser-induced damage (study 2). RESULTS: In 13 of 38 anastomoses (study 1), the connector was malpositioned, 3 because of a severely diseased coronary wall and 10 because of an inner diameter less than the intended target range. The laser-punch success rates on coronary arteries with an early and advanced lesion were 100% (16/16) and 89% (8/9; lesions were located in the inferolateral wall), respectively. In one case, an advanced lesion (ie, fibrocalcified plaque) was located in the superolateral wall and caused a laser-punch failure. No histological signs of laser-induced damage were observed, in case of correct use (study 2). CONCLUSIONS: This study demonstrates the feasibility of an anastomotic connector on human diseased coronary arteries and shows that lasering does not induce coronary wall damage. However, careful selection of the coronary, regarding the target inner diameter and disease status, will prevent construction failures. This connector could facilitate less invasive coronary artery bypass grafting.
Asunto(s)
Anastomosis Quirúrgica/métodos , Enfermedad de la Arteria Coronaria/cirugía , Vasos Coronarios/cirugía , Láseres de Excímeros/uso terapéutico , Anastomosis Quirúrgica/instrumentación , Animales , Puente de Arteria Coronaria/métodos , Puente de Arteria Coronaria Off-Pump/métodos , Vasos Coronarios/efectos de la radiación , Modelos Animales de Enfermedad , Femenino , Humanos , Láseres de Excímeros/efectos adversos , Conejos , PorcinosRESUMEN
AIMS: Neutrophil gelatinase-associated lipocalin (NGAL) is an effector molecule of the innate immune system. One of its actions is the prolongation of matrix metalloproteinase-9 (MMP-9) activity by the formation of a degradation-resistant NGAL/MMP-9 complex. We studied NGAL in human atherosclerotic lesions and we examined whether NGAL could act as a target for molecular imaging of atherosclerotic plaques. METHODS AND RESULTS: Increased levels of NGAL and the NGAL/MMP-9 complex were associated with high lipid content, high number of macrophages, high interleukin-6 (IL-6) and IL-8 levels, and low smooth muscle cell content in human atherosclerotic lesions obtained during carotid endarterectomy (n= 122). Moreover, plaque levels of NGAL tended to be higher when intra-plaque haemorrhage (IPH) or luminal thrombus was present (n= 77) than without the presence of IPH or thrombus (n= 30). MMP-9 and -8 activities were strongly related to NGAL levels. The enhancement on magnetic resonance (MR) images of the abdominal aorta of ApoE(-/-)/eNOS(-/-) mice was observed at 72 h after injection of NGAL/24p3-targeted micelles. The specificity of these results was validated by histology, and co-localization of micelles, macrophages, and NGAL/24p3 was observed. CONCLUSION: NGAL is highly expressed in atheromatous human plaques and associated with increased MMP-9 activity. NGAL can be detected in murine atherosclerotic arteries using targeted high-resolution MR imaging. Therefore, we conclude that NGAL might serve as a novel imaging target for the detection of high-risk plaques.
Asunto(s)
Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/metabolismo , Enfermedades de las Arterias Carótidas/metabolismo , Enfermedades de las Arterias Carótidas/patología , Lipocalinas/genética , Lipocalinas/metabolismo , Imagen por Resonancia Magnética/métodos , Proteínas Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Animales , Aorta/patología , Apolipoproteínas E/genética , Modelos Animales de Enfermedad , Endarterectomía Carotidea , Estudios de Factibilidad , Humanos , Lipocalina 2 , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Noqueados , Micelas , Óxido Nítrico Sintasa de Tipo III/genéticaRESUMEN
OBJECTIVE: Atherosclerotic plaque rupture can lead to severe complications such as myocardial infarction and stroke. Myeloid related protein (Mrp)-14, Mrp-8, and Mrp-8/14 complex are inflammatory markers associated with myocardial infarction. It is, however, unknown whether Mrps are associated with a rupture-prone plaque phenotype. In this study, we determined the association between Mrp-14, -8, -8/14 plaque levels and plaque characteristics. METHODS AND RESULTS: In 186 human carotid plaques, levels of Mrp-14, -8, and -8/14 were quantified using ELISA. High levels of Mrp-14 were found in lesions with a large lipid core, high macrophage staining, and low smooth muscle cell and collagen amount. Plaques with high levels of Mrp-14 contained high interleukin (IL)-6, IL-8, matrix metalloprotease (MMP)-8, MMP-9, and low MMP-2 concentrations. Mrp-8 and Mrp-8/14 showed a similar trend. Within plaques, a subset of nonfoam macrophages expressed Mrp-8 and Mrp-14 and the percentage of Mrp-positive macrophages was higher in rupture-prone lesions compared to stable ones. In vitro, this subset of macrophages does not acquire a foamy phenotype when fed oxLDL. CONCLUSIONS: Mrp-14 is strongly associated with the histopathologic features and the inflammatory status of rupture-prone atherosclerotic lesions, identifying Mrp-14 as a local marker for these plaques.
Asunto(s)
Aterosclerosis/metabolismo , Calgranulina B/metabolismo , Arterias Carótidas/patología , Enfermedades de las Arterias Carótidas/metabolismo , Aterosclerosis/patología , Aterosclerosis/cirugía , Biomarcadores/metabolismo , Calgranulina A/metabolismo , Arterias Carótidas/metabolismo , Enfermedades de las Arterias Carótidas/patología , Enfermedades de las Arterias Carótidas/cirugía , Endarterectomía Carotidea , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Inmunohistoquímica , Macrófagos/metabolismo , Macrófagos/patología , Estudios Retrospectivos , Rotura EspontáneaRESUMEN
Dexamethasone (Dex), for prevention of chronic lung disease in preterm infants, showed potential negative long-term effects. Studies regarding long-term cardiovascular effects are lacking. We investigated possible histopathological myocardial changes after neonatal Dex in the young and adult rat heart. Rats were treated with Dex on d 1, 2, and 3 (0.5, 0.3, and 0.1 mg/kg) of life. Control-pups received saline. At 4, 8, and 50 wk after birth rats were killed and anatomic data collected. Heart tissue was stained with hematoxylin and eosin, Cadherin-periodic acid schiff, and sirius red for cardiomyocyte morphometry and collagen determination. Presence of macrophages and mast cells was analyzed. Cardiomyocyte length of the Dex-treated rats was increased in all three age groups, whereas ventricular weight was reduced. Cardiomyocyte volumes were increased at 50 wk indicating cellular hypertrophy. Collagen content gradually increased with age and was 62% higher in Dex rats at 50 wk. Macrophage focus score and mast cell count were also higher. Neonatal Dex affects normal heart growth resulting in cellular hypertrophy and increased collagen deposition in the adult rat heart. Because previous studies in rats showed premature death, suggesting cardiac failure, cardiovascular follow-up of preterm infants treated with glucocorticoids should be considered.
Asunto(s)
Dexametasona/farmacología , Corazón/efectos de los fármacos , Factores de Edad , Animales , Animales Recién Nacidos , Compuestos Azo , Colágeno/metabolismo , Relación Dosis-Respuesta a Droga , Eosina Amarillenta-(YS) , Hematoxilina , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Reacción del Ácido Peryódico de Schiff , RatasRESUMEN
BACKGROUND: Glucocorticosteroids (mostly dexamethasone) are widely used to prevent chronic lung disease in premature infants. Neonatal rats treated with dexamethasone have been shown to have reduced cardiac mass and cardiomyocyte hypertrophy, suggesting a lower number of cardiomyocytes at adult age, and a severely reduced life expectancy. In the present study we tested the hypothesis that a lower number of cardiomyocytes in later life is caused by a reduced cardiomyocyte proliferation and/or by early cell death (apoptosis). METHODS AND RESULTS: Rat pups received dexamethasone or saline control on day 1, 2 and 3 and were sacrificed at day 0, 2, 4, 7 and 21. The cardiomyocytes of dexamethasone treated pups showed a reduced proliferation as indicated by a lower mitotic index and reduced number of Ki-67 positive cardiomyocytes on day 2 and 4 as compared to day 0 and day 7 and also as compared to the age-matched saline pups. On day 7 and day 21 the mitotic index was not different between groups. From day 2 onward up to day 21 dexamethasone treated pups showed a lower number of cardiomyocytes. The cardiomyocytes showed no signs (<<1%) of apoptosis (Caspase-3 and cleaved-PARP) in any group. CONCLUSION: The temporary suppression of cardiomyocyte hyperplasia found in dexamethasone treated pups eventually leads to a reduced number and hypertrophy of cardiomyocytes during adult life.