Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 29(12)2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28117500

RESUMEN

The use of polymeric crosslinkers is an attractive method to modify the mechanical properties of supramolecular materials, but their effects on the self-assembly of the underlying supramolecular polymer networks are poorly understood. Modulation of the gelation pathway of a reaction-coupled low molecular weight hydrogelator is demonstrated using (bio)polymeric crosslinkers of disparate physicochemical identities, providing a handle for control over materials properties.

2.
J Mater Chem B ; 4(5): 852-858, 2016 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32263157

RESUMEN

In recent years, we have developed a low molecular weight hydrogelator system that is formed in situ under ambient conditions through catalysed hydrazone formation between two individually non-gelating components. In this contribution, we describe a molecular toolbox based on this system which allows us to (1) investigate the limits of gel formation and fine-tuning of their bulk properties, (2) introduce multicolour fluorescent probes in an easy fashion to enable high-resolution imaging, and (3) chemically modify the supramolecular gel fibres through click and non-covalent chemistry, to expand the functionality of the resultant materials. In this paper we show preliminary applications of this toolbox, enabling covalent and non-covalent functionalisation of the gel network with proteins and multicolour imaging of hydrogel networks with embedded mammalian cells and their substructures. Overall, the results show that the toolbox allows for on demand gel network visualisation and functionalisation, enabling a wealth of applications in the areas of chemical biology and smart materials.

3.
Org Biomol Chem ; 11(48): 8435-42, 2013 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-24196136

RESUMEN

In this study we designed a new class of symmetrical facial oligothiophene amphiphiles, which could be obtained in fewer steps than for previously reported analogues, but still possess the specific substituent sequence to control their backbone curvature. This novel design allows the late-stage introduction of hydrophilic groups, aiding both purification and ease of structure variation. Following the new synthetic scheme, symmetrical ter- and sexi-thiophenes were synthesized, analysed and their properties were compared to their non-symmetrical analogues. Surprisingly, the self-assembly behaviour in water, aggregate morphologies and photo-physical properties turned out to be significantly different despite the same ratio of hydrophilic and hydrophobic substituents. The new substitution pattern resulted in a drastic decrease of the critical aggregation concentration and an increase of the aggregate size. The symmetrical positioning of the substituents also heavily influenced the photo-physical properties. The changes were observed as large blue shifts in the absorption and emission spectra in water when compared to similar regio-regular oligothiophene amphiphiles.


Asunto(s)
Tensoactivos/química , Tiofenos/química , Interacciones Hidrofóbicas e Hidrofílicas , Transición de Fase , Espectrofotometría , Tensoactivos/síntesis química , Tiofenos/síntesis química , Agua/química
4.
Nat Chem ; 5(5): 433-7, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23609096

RESUMEN

Low-molecular-weight gels show great potential for application in fields ranging from the petrochemical industry to healthcare and tissue engineering. These supramolecular gels are often metastable materials, which implies that their properties are, at least partially, kinetically controlled. Here we show how the mechanical properties and structure of these materials can be controlled directly by catalytic action. We show how in situ catalysis of the formation of gelator molecules can be used to accelerate the formation of supramolecular hydrogels, which drastically enhances their resulting mechanical properties. Using acid or nucleophilic aniline catalysis, it is possible to make supramolecular hydrogels with tunable gel-strength in a matter of minutes, under ambient conditions, starting from simple soluble building blocks. By changing the rate of formation of the gelator molecules using a catalyst, the overall rate of gelation and the resulting gel morphology are affected, which provides access to metastable gel states with improved mechanical strength and appearance despite an identical gelator composition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...