RESUMEN
BACKGROUND: Insight into cellular immune responses to COVID-19 vaccinations is crucial for optimizing booster programs in kidney transplant recipients (KTRs). METHODS: In an immunologic substudy of a multicenter randomized controlled trial (NCT05030974) investigating different repeated vaccination strategies in KTR who showed poor serological responses after 2 or 3 doses of an messenger RNA (mRNA)-based vaccine, we compared SARS-CoV-2-specific interleukin-21 memory T-cell and B-cell responses by enzyme-linked immunosorbent spot (ELISpot) assays and serum IgG antibody levels. Patients were randomized to receive: a single dose of mRNA-1273 (100 µg, nâ =â 25), a double dose of mRNA-1273 (2 × 100 µg, nâ =â 25), or a single dose of adenovirus type 26 encoding the SARS-CoV-2 spike glycoprotein (Ad26.COV2.S) (nâ =â 25). In parallel, we also examined responses in 50 KTR receiving 100 µg mRNA-1273, randomized to continue (nâ =â 25) or discontinue (nâ =â 25) mycophenolate mofetil/mycophenolic acid. As a reference, the data were compared with KTR who received 2 primary mRNA-1273 vaccinations. RESULTS: Repeated vaccination increased the seroconversion rate from 21% to 66% in all patients, which was strongly associated with enhanced levels of SARS-CoV-2-specific interleukin-21 memory T cells (odd ratio, 3.84 [1.89-7.78]; Pâ <â 0.001) and B cells (odd ratio, 35.93 [6.94-186.04]; Pâ <â 0.001). There were no significant differences observed in these responses among various vaccination strategies. In contrast to KTR vaccinated with 2 primary vaccinations, the number of antigen-specific memory B cells demonstrated potential for classifying seroconversion after repeated vaccination (area under the curve, 0.64; 95% confidence interval, 0.37-0.90; Pâ =â 0.26 and area under the curve, 0.95; confidence interval, 0.87-0.97; Pâ <â 0.0001, respectively). CONCLUSIONS: Our study emphasizes the importance of virus-specific memory T- and B-cell responses for comprehensive understanding of COVID-19 vaccine efficacy among KTR.
RESUMEN
Natural killer (NK) cells, with a unique NK cell receptor phenotype, are abundantly present in the non-pregnant (endometrium) and pregnant (decidua) humanuterine mucosa. It is hypothesized that NK cells in the endometrium are precursors for decidual NK cells present during pregnancy. Microenvironmental changes can alter the phenotype of NK cells, but it is unclear whether decidual NK cell precursors in the endometrium alter their NK cell receptor repertoire under the influence of pregnancy. To examine whether decidual NK cell precursors reveal phenotypic modifications upon pregnancy, we immunophenotyped the NK cell receptor repertoire of both endometrial and early-pregnancy decidual NK cells using flow cytometry. We showed that NK cells in pre-pregnancy endometrium have a different phenotypic composition compared to NK cells in early-pregnancy decidua. The frequency of killer-immunoglobulin-like receptor (KIR expressing NK cells, especially KIR2DS1, KIR2DL2L3S2, and KIR2DL2S2 was significantly lower in decidua, while the frequency of NK cells expressing activating receptors NKG2D, NKp30, NKp46, and CD244 was significantly higher compared to endometrium. Furthermore, co-expression patterns showed a lower frequency of NK cells co-expressing KIR3DL1S1 and KIR2DL2L3S2 in decidua. Our results provide new insights into the adaptations in NK cell receptor repertoire composition that NK cells in the uterine mucosa undergo upon pregnancy.
Asunto(s)
Endometrio , Células Asesinas Naturales , Embarazo , Femenino , Humanos , Receptores de Células Asesinas Naturales , Útero , Membrana MucosaRESUMEN
The increasing prevalence of IgE-mediated cow's milk allergy (CMA) in childhood is a worldwide health concern. There is a growing awareness that the gut microbiome (GM) might play an important role in CMA development. Therefore, treatment with probiotics and prebiotics has gained popularity. This systematic review provides an overview of the alterations of the GM, metabolome, and immune response in CMA children and animal models, including post-treatment modifications. MEDLINE, PubMed, Scopus, and Web of Science were searched for studies on GM in CMA-diagnosed children, published before 1 March 2023. A total of 21 articles (13 on children and 8 on animal models) were included. The studies suggest that the GM, characterized by an enrichment of the Clostridia class and reductions in the Lactobacillales order and Bifidobacterium genus, is associated with CMA in early life. Additionally, reduced levels of short-chain fatty acids (SCFAs) and altered amino acid metabolism were reported in CMA children. Commonly used probiotic strains belong to the Bifidobacterium and Lactobacillus genera. However, only Bifidobacterium levels were consistently upregulated after the intervention, while alterations of other bacteria taxa remain inconclusive. These interventions appear to contribute to the restoration of SCFAs and amino acid metabolism balance. Mouse models indicate that these interventions tend to restore the Th 2/Th 1 balance, increase the Treg response, and/or silence the overall pro- and anti-inflammatory cytokine response. Overall, this systematic review highlights the need for multi-omics-related research in CMA children to gain a mechanistic understanding of this disease and to develop effective treatments and preventive strategies.
Asunto(s)
Microbioma Gastrointestinal , Metaboloma , Hipersensibilidad a la Leche , Probióticos , Animales , Bovinos , Niño , Preescolar , Humanos , Lactante , Ratones , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/inmunología , Hipersensibilidad a la Leche/inmunología , PrebióticosRESUMEN
BACKGROUND: Mucosal antibodies play a critical role in preventing SARS-CoV-2 infections or reinfections by blocking the interaction of the receptor-binding domain (RBD) with the angiotensin-converting enzyme 2 (ACE2) receptor on the cell surface. In this study, we investigated the difference between the mucosal antibody response after primary infection and vaccination. METHODS: We assessed longitudinal changes in the quantity and capacity of nasal antibodies to neutralize the interaction of RBD with the ACE2 receptor using the spike protein and RBD from ancestral SARS-CoV-2 (Wuhan-Hu-1), as well as the RBD from the Delta and Omicron variants. RESULTS: Significantly higher mucosal IgA concentrations were detected postinfection vs postvaccination, while vaccination induced higher IgG concentrations. However, ACE2-inhibiting activity did not differ between the cohorts. Regarding whether IgA or IgG drove ACE2 inhibition, infection-induced binding inhibition was driven by both isotypes, while postvaccination binding inhibition was mainly driven by IgG. CONCLUSIONS: Our study provides new insights into the relationship between antibody isotypes and neutralization by using a sensitive and high-throughput ACE2 binding inhibition assay. Key differences are highlighted between vaccination and infection at the mucosal level, showing that despite differences in the response quantity, postinfection and postvaccination ACE2 binding inhibition capacity did not differ.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2 , COVID-19/prevención & control , Vacunación , Inmunoglobulina A , Inmunoglobulina G , Glicoproteína de la Espiga del Coronavirus , Unión ProteicaAsunto(s)
COVID-19 , Miositis , Humanos , Prevalencia , Países Bajos/epidemiología , COVID-19/epidemiología , Miositis/epidemiología , Anticuerpos , AutoanticuerposRESUMEN
Inflammation is a physiological state where immune cells evoke a response against detrimental insults. Finding a safe and effective treatment for inflammation associated diseases has been a challenge. In this regard, human mesenchymal stem cells (hMSC), exert immunomodulatory effects and have regenerative capacity making it a promising therapeutic option for resolution of acute and chronic inflammation. T cells play a critical role in inflammation and depending on their phenotype, they can stimulate or suppress inflammatory responses. However, the regulatory effects of hMSC on T cells and the underlying mechanisms are not fully elucidated. Most studies focused on activation, proliferation, and differentiation of T cells. Here, we further investigated memory formation and responsiveness of CD4+ T cells and their dynamics by immune-profiling and cytokine secretion analysis. Umbilical cord mesenchymal stem cells (UC-MSC) were co-cultured with either αCD3/CD28 beads, activated peripheral blood mononuclear cells (PBMC) or magnetically sorted CD4+ T cells. The mechanism of immune modulation of UC-MSC were investigated by comparing different modes of action; transwell, direct cell-cell contact, addition of UC-MSC conditioned medium or blockade of paracrine factor production by UC-MSC. We observed a differential effect of UC-MSC on CD4+ T cell activation and proliferation using PBMC or purified CD4+ T cell co-cultures. UC-MSC skewed the effector memory T cells into a central memory phenotype in both co-culture conditions. This effect on central memory formation was reversible, since UC-MSC primed central memory cells were still responsive after a second encounter with the same stimuli. The presence of both cell-cell contact and paracrine factors were necessary for the most pronounced immunomodulatory effect of UC-MSC on T cells. We found suggestive evidence for a partial role of IL-6 and TGFß in the UC-MSC derived immunomodulatory function. Collectively, our data show that UC-MSCs clearly affect T cell activation, proliferation and maturation, depending on co-culture conditions for which both cell-cell contact and paracrine factors are needed.
Asunto(s)
Leucocitos Mononucleares , Células Madre Mesenquimatosas , Humanos , Cordón Umbilical , Linfocitos T CD4-Positivos , Inflamación , FenotipoRESUMEN
T-cell-mediated help to B cells is required for the development of humoral responses, in which the cytokine interleukin (IL)-21 is key. Here, we studied the mRNA-1273 vaccine-induced SARS-CoV-2-specific memory T-cell IL-21 response, memory B cell response, and immunoglobulin (Ig)G antibody levels in peripheral blood at 28 days after the second vaccination by ELISpot and the fluorescent bead-based multiplex immunoassay, respectively. We included 40 patients with chronic kidney disease (CKD), 34 patients on dialysis, 63 kidney transplant recipients (KTR), and 47 controls. We found that KTR, but not patients with CKD and those receiving dialysis, showed a significantly lower number of SARS-CoV-2-specific IL-21 producing T cells than controls (P < .001). KTR and patients with CKD showed lower numbers of SARS-CoV-2-specific IgG-producing memory B cells when compared with controls (P < .001 and P = .01, respectively). The T-cell IL-21 response was positively associated with the SARS-CoV-2-specific B cell response and the SARS-CoV-2 spike S1-specific IgG antibody levels (both Pearson r = 0.5; P < .001). In addition, SARS-CoV-2-specific B cell responses were shown to be IL-21 dependent. Taken together, we show that IL-21 signaling is important in eliciting robust B cell-mediated immune responses in patients with kidney disease and KTR.
Asunto(s)
COVID-19 , Enfermedades Renales , Trasplante de Riñón , Humanos , Vacunas contra la COVID-19 , Vacuna nCoV-2019 mRNA-1273 , SARS-CoV-2 , Interleucinas , Inmunoglobulina G , Anticuerpos Antivirales , Inmunidad , Receptores de TrasplantesRESUMEN
Cytokines are regulators of the immune response against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). However, the contribution of cytokine-secreting CD4+ and CD8+ memory T cells to the SARS-CoV-2-specific humoral immune response in immunocompromised kidney patients is unknown. Here, we profiled 12 cytokines after stimulation of whole blood obtained 28 days post second 100 µg mRNA-1273 vaccination with peptides covering the SARS-CoV-2 spike (S)-protein from patients with chronic kidney disease (CKD) stage 4/5, on dialysis, kidney transplant recipients (KTR), and healthy controls. Unsupervised hierarchical clustering analysis revealed two distinct vaccine-induced cytokine profiles. The first profile was characterized by high levels of T-helper (Th)1 (IL-2, TNF-α, and IFN-γ) and Th2 (IL-4, IL-5, IL-13) cytokines, and low levels of Th17 (IL-17A, IL-22) and Th9 (IL-9) cytokines. This cluster was dominated by patients with CKD, on dialysis, and healthy controls. In contrast, the second cytokine profile contained predominantly KTRs producing mainly Th1 cytokines upon re-stimulation, with lower levels or absence of Th2, Th17, and Th9 cytokines. Multivariate analyses indicated that a balanced memory T cell response with the production of Th1 and Th2 cytokines was associated with high levels of S1-specific binding and neutralizing antibodies mainly at 6 months after second vaccination. In conclusion, seroconversion is associated with the balanced production of cytokines by memory T cells. This emphasizes the importance of measuring multiple T cell cytokines to understand their influence on seroconversion and potentially gain more information about the protection induced by vaccine-induced memory T cells.
RESUMEN
In atopic dermatitis (AD), chronic skin inflammation is associated with skin barrier defects and skin microbiome dysbiosis including a lower abundance of Gram-positive anaerobic cocci (GPACs). We here report that, through secreted soluble factors, GPAC rapidly and directly induced epidermal host-defense molecules in cultured human keratinocytes and indirectly via immune-cell activation and cytokines derived thereof. Host-derived antimicrobial peptides known to limit the growth of Staphylococcus aureus-a skin pathogen involved in AD pathology-were strongly upregulated by GPAC-induced signaling through aryl hydrocarbon receptor (AHR)-independent mechanisms, with a concomitant AHR-dependent induction of epidermal differentiation genes and control of pro-inflammatory gene expression in organotypic human epidermis. By these modes of operandi, GPAC may act as an "alarm signal" and protect the skin from pathogenic colonization and infection in the event of skin barrier disruption. Fostering growth or survival of GPAC may be starting point for microbiome-targeted therapeutics in AD.
RESUMEN
Introduction: A 6-month course of cyclophosphamide (CP) and steroids is effective in primary membranous nephropathy (MN), but unappealing because of long-term side effects. We evaluated efficacy of an "antibody-guided" treatment schedule. Methods: Patients with phospholipase A2 receptor (PLA2R)-related MN and high risk of progression were treated with CP 1.5 mg/kg/d and steroids in cycles of 8 weeks. Anti-PLA2R antibodies were measured by indirect immunofluorescence (IIFT) at 8, 16, and 24 weeks, and a negative test resulted in withdrawal of CP, and rapid tapering of prednisone. In patients with persistent anti-PLA2R antibodies at 24 weeks, CP was switched to mycophenolate mofetil. Treatment was repeated in patients with a relapse. Results: Our analysis included 65 patients (48 males, 17 females), age 61 ± 12 years, estimated glomerular filtration rate (eGFR) 46 ml/min per 1.73 m2 (35-68), urine protein-to-creatinine ratio 7.7 grams/10 mmol creatinine (5.4-11.1) and serum albumin 20 g/l (16-26). Immunologic remission rate was 71% after 8 weeks, 86% after 16 weeks, 88% after 24 weeks, and 94% after 3 years. Twenty-seven patients (42%) had persistent clinical remission after only 8 weeks of therapy. Sixteen patients needed a second course of therapy because of immunologic or clinical relapse. Follow-up was 37 (26-58) months. Overall partial remission rate was 92%. One patient developed end-stage kidney disease. Antibody-guided therapy (ABG) was as effective as the standard 6-month course, whereas providing a lower cumulative dose of CP (11.1 [8.0-18.5] vs. 18.9 [14.2-23.6] grams). Conclusion: ABG is effective, and allows individualized therapy, with many patients responding to 8 weeks of CP-based therapy.
RESUMEN
BACKGROUND: The immune response to COVID-19 vaccination is inferior in kidney transplant recipients (KTRs) and to a lesser extent in patients on dialysis or with chronic kidney disease (CKD). We assessed the immune response 6 months after mRNA-1273 vaccination in kidney patients and compared this to controls. METHODS: A total of 152 participants with CKD stages G4/5 (eGFR <30 mL/min/1.73 m2), 145 participants on dialysis, 267 KTRs, and 181 controls were included. SARS-CoV-2 Spike S1 specific IgG antibodies were measured using fluorescent bead-based multiplex-immunoassay, neutralizing antibodies to ancestral, Delta, and Omicron (BA.1) variants by plaque reduction, and T-cell responses by interferon-γ release assay. RESULTS: At 6 months after vaccination, S1-specific antibodies were detected in 100% of controls, 98.7% of CKD G4/5 patients, 95.1% of dialysis patients, and 56.6% of KTRs. These figures were comparable to the response rates at 28 days, but antibody levels waned significantly. Neutralization of the ancestral and Delta variants was detected in most participants, whereas neutralization of Omicron was mostly absent. S-specific T-cell responses were detected at 6 months in 75.0% of controls, 69.4% of CKD G4/5 patients, 52.6% of dialysis patients, and 12.9% of KTRs. T-cell responses at 6 months were significantly lower than responses at 28 days. CONCLUSIONS: Although seropositivity rates at 6 months were comparable to rates at 28 days after vaccination, significantly decreased antibody levels and T-cell responses were observed. The combination of low antibody levels, reduced T-cell responses, and absent neutralization of the newly emerging variants indicates the need for additional boosts or alternative vaccination strategies in KTRs. CLINICAL TRIALS REGISTRATION: NCT04741386.
Asunto(s)
COVID-19 , Trasplante de Riñón , Insuficiencia Renal Crónica , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Inmunoglobulina G , Diálisis Renal , Insuficiencia Renal Crónica/terapia , SARS-CoV-2 , Linfocitos T , VacunaciónRESUMEN
BACKGROUND: An urgent need exists to improve the suboptimal COVID-19 vaccine response in kidney transplant recipients (KTRs). We aimed to compare three alternative strategies with a control single dose mRNA-1273 vaccination: a double vaccine dose, heterologous vaccination, and temporary discontinuation of mycophenolate mofetil or mycophenolic acid. METHODS: This open-label randomised trial, done in four university medical centres in the Netherlands, enrolled KTRs without seroconversion after two or three doses of an mRNA vaccine. Between Oct 20, 2021, and Feb 2, 2022, 230 KTRs were randomly assigned block-wise per centre by a web-based system in a 1:1:1 manner to receive 100 µg mRNA-1273, 2â×â100 µg mRNA-1273, or Ad26.COV2-S vaccination. In addition, 103 KTRs receiving 100 µg mRNA-1273, were randomly assigned 1:1 to continue (mycophenolate mofetil+) or discontinue (mycophenolate mofetil-) mycophenolate mofetil or mycophenolic acid treatment for 2 weeks. The primary outcome was the percentage of participants with a spike protein (S1)-specific IgG concentration of at least 10 binding antibody units per mL at 28 days after vaccination, assessed in all participants who had a baseline measurement and who completed day 28 after vaccination without SARS-CoV-2 infection. Safety was assessed as a secondary outcome in all vaccinated patients by incidence of solicited adverse events, acute rejection or other serious adverse events. This trial is registered with ClinicalTrials.gov, NCT05030974 and is closed. FINDINGS: Between April 23, 2021, and July 2, 2021, of 12â158 invited Dutch KTRs, 3828 with a functioning kidney transplant participated in a national survey for antibody measurement after COVID-19 vaccination. Of these patients, 1311 did not seroconvert after their second vaccination and another 761 not even after a third. From these seronegative patients, 345 agreed to participate in our repeated vaccination study. Vaccination with 2â×âmRNA-1273 or Ad26.COV2-S was not superior to single mRNA-1273, with seroresponse rates of 49 (68%) of 72 (95% CI 56-79), 46 (63%) of 73 (51-74), and 50 (68%) of 73 (57-79), respectively. The difference with single mRNA-1273 was -0·4% (-16 to 15; p=0·96) for 2â×âmRNA-1273 and -6% (-21 to 10; p=0·49) for Ad26.COV2-S. Mycophenolate mofetil- was also not superior to mycophenolate mofetil+, with seroresponse rates of 37 (80%) of 46 (66-91) and 31 (67%) of 46 (52-80), and a difference of 13% (-5 to 31; p=0·15). Local adverse events were more frequent after a single and double dose of mRNA-1273 than after Ad26.COV2-S (65 [92%] of 71, 67 [92%] of 73, and 38 [50%] of 76, respectively; p<0·0001). No acute rejection occurred. There were no serious adverse events related to vaccination. INTERPRETATION: Repeated vaccination increases SARS-CoV-2-specific antibodies in KTRs, without further enhancement by use of a higher dose, a heterologous vaccine, or 2 weeks discontinuation of mycophenolate mofetil or mycophenolic acid. To achieve a stronger response, possibly required to neutralise new virus variants, repeated booster vaccination is needed. FUNDING: The Netherlands Organization for Health Research and Development and the Dutch Kidney Foundation.
Asunto(s)
COVID-19 , Trasplante de Riñón , Humanos , Vacunas contra la COVID-19 , Ácido Micofenólico , Vacuna nCoV-2019 mRNA-1273 , SARS-CoV-2 , Anticuerpos Antivirales , Inmunogenicidad Vacunal , Método Doble Ciego , Vacunas de ARNmRESUMEN
Studies have shown that coronavirus disease 2019 (COVID-19) vaccination is associated with a lower humoral response in vulnerable kidney patients. Here, we investigated the T-cell response following COVID-19 vaccination in kidney patients compared with controls. Methods: Patients with chronic kidney disease (CKD) stage G4/5 [estimated glomerular filtration rate <30 mL/min/1.73 m2], on dialysis, or living with a kidney transplant and controls received 2 doses of the mRNA-1273 COVID-19 vaccine. Peripheral blood mononuclear cells were isolated at baseline and 28 d after the second vaccination. In 398 participants (50% of entire cohort; controls n = 95, CKD G4/5 n = 81, dialysis n = 78, kidney transplant recipients [KTRs] n = 144)' SARS-CoV-2-specific T cells were measured using an IFN-γ enzyme-linked immune absorbent spot assay. Results: A significantly lower SARS-CoV-2-specific T-cell response was observed after vaccination of patients on dialysis (54.5%) and KTRs (42.6%) in contrast to CDK G4/5 (70%) compared with controls (76%). The use of calcineurin inhibitors was associated with a low T-cell response in KTRs. In a subset of 20 KTRs, we observed waning of the cellular response 6 mo after the second vaccination, which was boosted to some extent after a third vaccination, although T-cell levels remained low. Conclusion: Our data suggest that vaccination is less effective in these patient groups, with humoral nonresponders also failing to mount an adequate cellular response, even after the third vaccination. Given the important role of T cells in protection against disease and cross-reactivity to SARS-CoV-2 variants, alternative vaccination strategies are urgently needed in these high-risk patient groups.
RESUMEN
OBJECTIVE: To compare the immunologic profiles of peripheral and menstrual blood (MB) of women who experience recurrent pregnancy loss and women without pregnancy complications. DESIGN: Explorative case-control study. Cross-sectional assessment of flow cytometry-derived immunologic profiles. SETTING: Academic medical center. PATIENT(S): Women who experienced more than 2 consecutive miscarriages. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Flow cytometry-based immune profiles of uterine and systemic immunity (recurrent pregnancy loss, n = 18; control, n = 14) assessed by machine learning classifiers in an ensemble strategy, followed by recursive feature selection. RESULT(S): In peripheral blood, the combination of 4 cell types (nonswitched memory B cells, CD8+ T cells, CD56bright CD16- natural killer [NKbright] cells, and CD4+ effector T cells) classified samples correctly to their respective cohort. The identified classifying cell types in peripheral blood differed from the results observed in MB, where a combination of 6 cell types (Ki67+CD8+ T cells, (Human leukocyte antigen-DR+) regulatory T cells, CD27+ B cells, NKbright cells, regulatory T cells, and CD24HiCD38Hi B cells) plus age allowed for assigning samples correctly to their respective cohort. Based on the combination of these features, the average area under the curve of a receiver operating characteristic curve and the associated accuracy were >0.8 for both sample sources. CONCLUSION(S): A combination of immune subsets for cohort classification allows for robust identification of immune parameters with possible diagnostic value. The noninvasive source of MB holds several opportunities to assess and monitor reproductive health.
Asunto(s)
Aborto Habitual , Aborto Habitual/diagnóstico , Estudios de Casos y Controles , Estudios Transversales , Femenino , Humanos , Aprendizaje Automático , Proyectos Piloto , EmbarazoRESUMEN
Pregnancy after renal transplantation is associated with an increased risk of complications. While a delicately balanced uterine immune system is essential for a successful pregnancy, little is known about the uterine immune environment of pregnant kidney transplant recipients. Moreover, children born to kidney transplant recipients are exposed in utero to immunosuppressive drugs, with possible consequences for neonatal outcomes. Here, we defined the effects of kidney transplantation on the immune cell composition during pregnancy with a cohort of kidney transplant recipients as well as healthy controls with uncomplicated pregnancies. Maternal immune cells from peripheral blood were collected during pregnancy as well as from decidua and cord blood obtained after delivery. Multiparameter flow cytometry was used to identify and characterize populations of cells. While systemic immune cell frequencies were altered in kidney transplant patients, immune cell dynamics over the course of pregnancy were largely similar to healthy women. In the decidua of women with a kidney transplant, we observed a decreased frequency of HLA-DR+ Treg, particularly in those treated with tacrolimus versus those that were treated with azathioprine next to tacrolimus, or with azathioprine alone. In addition, both the innate and adaptive neonatal immune system of children born to kidney transplant recipients was significantly altered compared to neonates born from uncomplicated pregnancies. Overall, our findings indicate a significant and distinct impact on the maternal systemic, uterine, and neonatal immune cell composition in pregnant kidney transplant recipients, which could have important consequences for the incidence of pregnancy complications, treatment decisions, and the offspring's health.
Asunto(s)
Decidua/efectos de los fármacos , Feto/efectos de los fármacos , Inmunosupresores/efectos adversos , Trasplante de Riñón/efectos adversos , Subgrupos Linfocitarios/efectos de los fármacos , Madres , Receptores de Trasplantes , Adulto , Biomarcadores/metabolismo , Estudios de Casos y Controles , Células Cultivadas , Decidua/inmunología , Decidua/metabolismo , Femenino , Feto/inmunología , Feto/metabolismo , Citometría de Flujo , Humanos , Inmunofenotipificación , Recién Nacido , Activación de Linfocitos/efectos de los fármacos , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/metabolismo , Fenotipo , Embarazo , Resultado del Embarazo , Adulto JovenRESUMEN
Within pregnancies occurring between 1986 and 2017 in Dutch kidney transplant recipients (KTR), we retrospectively compared short-term maternal and foetal outcomes between patients on calcineurin inhibitor (CNI) based (CNI+) and CNI-free immunosuppression (CNI-). We identified 129 CNI+ and 125 CNI- pregnancies in 177 KTR. Demographics differed with CNI+ having higher body mass index (P = 0.045), shorter transplant-pregnancy interval (P < 0.01), later year of transplantation and -pregnancy (P < 0.01). Serum creatinine levels were numerically higher in CNI+ in all study phases, but only reached statistical significance in third trimester (127 vs. 105 µm; P < 0.01), where the percentual changes from preconceptional level also differed (+3.1% vs. -2.2% in CNI-; P = 0.05). Postpartum both groups showed 11-12% serum creatinine rise from preconceptional level. Incidence of low birth weight (LBW) tended to be higher in CNI+ (52% vs. 46%; P = 0.07). Both groups showed equal high rates of preterm delivery. Using CNIs during pregnancy lead to a rise in creatinine in the third trimester but does not negatively influence the course of graft function in the first year postpartum or direct foetal outcomes. High rates of preterm delivery and LBW in KTR, irrespective of CNI use, classify all pregnancies as high risk.
Asunto(s)
Inhibidores de la Calcineurina , Trasplante de Riñón , Inhibidores de la Calcineurina/efectos adversos , Femenino , Rechazo de Injerto , Humanos , Inmunosupresores/efectos adversos , Recién Nacido , Riñón , Trasplante de Riñón/efectos adversos , Embarazo , Resultado del Embarazo , Estudios RetrospectivosRESUMEN
Background: Pregnancy is a portentous stage in life, during which countless events are precisely orchestrated to ensure a healthy offspring. Maternal microbial communities are thought to have a profound impact on development. Although antibiotic drugs may interfere in these processes, they constitute the most frequently prescribed medication during pregnancy to prohibit detrimental consequences of infections. Gestational antibiotic intervention is linked to preeclampsia and negative effects on neonatal immunity. Even though perturbations in the immune system of the mother can affect reproductive health, the impact of microbial manipulation on maternal immunity is still unknown. Aim: To assess whether antibiotic treatment influences maternal immunity during pregnancy. Methods: Pregnant mice were treated with broad-spectrum antibiotics. The maternal gut microbiome was assessed. Numerous immune parameters throughout the maternal body, including placenta and amniotic fluid were investigated and a novel machine-learning ensemble strategy was used to identify immunological parameters that allow distinction between the control and antibiotic-treated group. Results: Antibiotic treatment reduced diversity of maternal microbiota, but litter sizes remained unaffected. Effects of antibiotic treatment on immunity reached as far as the placenta. Four immunological features were identified by recursive feature selection to contribute to the most robust classification (splenic T helper 17 cells and CD5+ B cells, CD4+ T cells in mesenteric lymph nodes and RORγT mRNA expression in placenta). Conclusion: In the present study, antibiotic treatment was able to affect the carefully coordinated immunity during pregnancy. These findings highlight the importance of inclusion of immunological parameters when studying the effects of medication used during gestation.
Asunto(s)
Inmunidad Adaptativa/inmunología , Animales Recién Nacidos/inmunología , Anticuerpos Antibacterianos/inmunología , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Microbioma Gastrointestinal/inmunología , Animales , Animales Recién Nacidos/microbiología , Antibacterianos/farmacología , Femenino , Microbioma Gastrointestinal/genética , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Intestinos/microbiología , Recuento de Linfocitos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , EmbarazoAsunto(s)
Vacunas contra la COVID-19 , COVID-19 , Fallo Renal Crónico , Trasplante de Riñón , Diálisis Renal , Insuficiencia Renal Crónica , Vacuna nCoV-2019 mRNA-1273 , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/inmunología , Humanos , Inmunidad , Fallo Renal Crónico/terapia , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/terapia , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/inmunología , Vacunas de ARNmRESUMEN
BACKGROUND: Anti-TNFα is increasingly used as treatment for immune mediated inflammatory diseases (IMID), such as inflammatory bowel disease (IBD), rheumatoid arthritis (RA) and psoriasis (PS). However, the impact of anti-TNFα during pregnancy on mother and newborn is under debate. This requires a sound knowledge of the effects of this treatment on pregnancy and neonatal outcomes. OBJECTIVES: To assess pregnancy and neonatal outcomes after anti-TNFα therapy during pregnancy in women with IMID, specifically IBD, RA and PS. METHODS: We performed a systematic review and meta-analysis of 39 studies assessing pregnancy and neonatal outcomes of women with IMID exposed to anti-TNFα agents during pregnancy. We used a random-effects model to determine pooled outcome measures. RESULTS: An increased risk of preterm births (OR 1.45, 95% CI = 1.16 to 1.82, p = 0.001) and infections in newborns (OR 1.12, 95% CI = 1.00 to 1.27, p = 0.05)) was seen for women in the combined group of IMID exposed to anti-TNFα compared to diseased controls. Specifically for IBD patients exposed to anti-TNFα, the risk was increased for preterm birth (OR 1.66, 95% CI = 1.14 to 2.42, p = 0.009), and low birth weight (OR 1.49, 95% CI = 1.01 to 2.20, p = 0.047) compared to diseased controls. Combined data from studies of women with RA and PS, showed no increased risk for adverse pregnancy outcome after exposure to anti-TNFα. Most children of mothers with IMID received vaccination according to national vaccination schemes and only minor adverse events were reported. CONCLUSION: Exposure to anti-TNFα agents during pregnancy is associated with increased risk of preterm birth and infections in newborns of women with IMID compared to diseased controls. The risk of preterm birth and low birth weight was increased in women with IBD specifically. The increased risk of infections in newborns underlines the importance of vaccination, which seems to be safe in children exposed to anti-TNFα. Delay of vaccination is therefore unnecessary in these children. These data may aid in balancing the continuing anti-TNFα therapy versus the risk of adverse pregnancy outcomes.
Asunto(s)
Antiinflamatorios/efectos adversos , Artritis Reumatoide/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Complicaciones del Embarazo/tratamiento farmacológico , Psoriasis/tratamiento farmacológico , Antiinflamatorios/administración & dosificación , Artritis Reumatoide/inmunología , Femenino , Humanos , Recién Nacido de Bajo Peso/inmunología , Recién Nacido , Infecciones/epidemiología , Infecciones/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Embarazo , Complicaciones del Embarazo/inmunología , Nacimiento Prematuro/epidemiología , Nacimiento Prematuro/inmunología , Psoriasis/inmunología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidoresRESUMEN
PURPOSE: Preclinical research provides evidence for the complement system as a potential common pathway in Stargardt disease (STGD1) and age-related macular degeneration (AMD) leading to retinal pigment epithelium (RPE) loss. However, systemic complement activation has not yet been assessed in STGD1 patients. We conducted a cross-sectional case-control study to assess systemic complement activation in STGD1 patients and its association with disease severity. METHODS: Systemic concentrations of complement component C3 and its degradation product C3d were compared between 80 STGD1 patients and 80 controls that were frequency matched for age and sex. The C3d/C3 ratio was used as parameter of systemic complement activation. Within the STGD1 cohort, we additionally examined the association between the C3d/C3 ratio, demographic and behavioural factors (age, sex, smoking and BMI), and measures of disease severity (age at onset, visual acuity, and area of atrophy). RESULTS: The C3d/C3 ratio did not significantly differ between patients (mean C3d/C3 ratio 3.5±1.4) and controls (mean C3d/C3 ratio 3.6±1.0), mean difference -0.156 (p = 0.804, independent samples t-test). The overall effect size was 8% (95% confidence interval, 3-15%). Elevated C3d/C3 ratios (>8.1) were found in three patients who all had a concomitant inflammatory condition at the time of blood draw. Within the patient cohort, C3 levels were associated with sex (mean difference -134, p = 0.001, independent samples t-test) and BMI (correlation coefficient 0.463, p<0.001, Spearman's Correlation). CONCLUSIONS: Systemic complement levels were not elevated in STGD1 patients compared to age and sex matched controls and was not associated with STGD1 severity. Considering the continued absent proof of a systemic contribution of the complement system to RPE loss in STGD1 patients, we hypothesize that complement activation in STGD1 is more likely a local process. In light of upcoming complement-targeted therapies, further studies are needed that measure complement levels in the eye of STGD1 patients.