Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 436(14): 168591, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38677493

RESUMEN

De novo protein folding into a native three-dimensional structure is indispensable for biological function, is instructed by its amino acid sequence, and occurs along a vectorial trajectory. The human proteome contains thousands of membrane-spanning proteins, whose biosynthesis begins on endoplasmic reticulum-associated ribosomes. Nearly half of all membrane proteins traverse the membrane more than once, including therapeutically important protein families such as solute carriers, G-protein-coupled receptors, and ABC transporters. These mediate a variety of functions like signal transduction and solute transport and are often of vital importance for cell function and tissue homeostasis. Missense mutations in multispan membrane proteins can lead to misfolding and cause disease; an example is the ABC transporter Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Even though our understanding of multispan membrane-protein folding still is rather rudimental, the cumulative knowledge of 20 years of basic research on CFTR folding has led to development of drugs that modulate the misfolded protein. This has provided the prospect of a life without CF to the vast majority of patients. In this review we describe our understanding of the folding pathway of CFTR in cells, which is modular and tolerates many defects, making it effective and robust. We address how modulator drugs affect folding and function of CFTR, and distinguish protein stability from its folding process. Since the domain architecture of (mammalian) ABC transporters are highly conserved, we anticipate that the insights we discuss here for folding of CFTR may lay the groundwork for understanding the general rules of ABC-transporter folding.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Pliegue de Proteína , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Animales , Retículo Endoplásmico/metabolismo , Fibrosis Quística/metabolismo , Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico
2.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37958724

RESUMEN

The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a large multi-spanning membrane protein that is susceptible to misfolding and aggregation. We have identified here the region responsible for this instability. Temperature-induced aggregation of C-terminally truncated versions of CFTR demonstrated that all truncations up to the second transmembrane domain (TMD2), including the R region, largely resisted aggregation. Limited proteolysis identified a folded structure that was prone to aggregation and consisted of TMD2 and at least part of the Regulatory Region R. Only when both TM7 (TransMembrane helix 7) and TM8 were present, TMD2 fragments became as aggregation-sensitive as wild-type CFTR, in line with increased thermo-instability of late CFTR nascent chains and in silico prediction of aggregation propensity. In accord, isolated TMD2 was degraded faster in cells than isolated TMD1. We conclude that TMD2 extended at its N-terminus with part of the R region forms a protease-resistant structure that induces heat instability in CFTR and may be responsible for its limited intracellular stability.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Calor , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Membrana Celular/metabolismo , Proteolisis , Temperatura
3.
Cell Mol Life Sci ; 80(1): 33, 2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36609925

RESUMEN

The question how proteins fold is especially pointed for large multi-domain, multi-spanning membrane proteins with complex topologies. We have uncovered the sequence of events that encompass proper folding of the ABC transporter CFTR in live cells by combining kinetic radiolabeling with protease-susceptibility assays. We found that CFTR folds in two clearly distinct stages. The first, co-translational, stage involves folding of the 2 transmembrane domains TMD1 and TMD2, plus one nucleotide-binding domain, NBD1. The second stage is a simultaneous, post-translational increase in protease resistance for both TMDs and NBD2, caused by assembly of these domains onto NBD1. Our assays probe every 2-3 residues (on average) in CFTR. This in-depth analysis at amino-acid level allows detailed analysis of domain folding and importantly also the next level: assembly of the domains into native, folded CFTR. Defects and changes brought about by medicines, chaperones, or mutations also are amenable to analysis. We here show that the well-known disease-causing mutation F508del, which established cystic fibrosis as protein-folding disease, caused co-translational misfolding of NBD1 but not TMD1 nor TMD2 in stage 1, leading to absence of stage-2 folding. Corrector drugs rescued stage 2 without rescuing NBD1. Likewise, the DxD motif in NBD1 that was identified to be required for export of CFTR from the ER we found to be required already upstream of export as CFTR mutated in this motif phenocopies F508del CFTR. The highly modular and stepwise folding process of such a large, complex protein explains the relatively high fidelity and correctability of its folding.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Estructura Terciaria de Proteína , Fibrosis Quística/genética , Mutación , Péptido Hidrolasas/genética , Pliegue de Proteína
4.
J Cyst Fibros ; 22 Suppl 1: S5-S11, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36216744

RESUMEN

The root cause of cystic fibrosis (CF), the most common life-shortening genetic disease in the Caucasian population, is the loss of function of the CFTR protein, which serves as a phosphorylation-activated, ATP-gated anion channel in numerous epithelia-lining tissues. In the past decade, high-throughput drug screening has made a significant stride in developing highly effective CFTR modulators for the treatment of CF. Meanwhile, structural-biology studies have succeeded in solving the high-resolution three-dimensional (3D) structure of CFTR in different conformations. Here, we provide a brief overview of some striking features of CFTR folding, function and pharmacology, in light of its specific structural features within the ABC-transporter superfamily. A particular focus is given to CFTR's first nucleotide-binding domain (NBD1), because folding of NBD1 constitutes a bottleneck in the CFTR protein biogenesis pathway, and ATP binding to this domain plays a unique role in the functional stability of CFTR. Unraveling the molecular basis of CFTR folding, function, and pharmacology would inspire the development of next-generation mutation-specific CFTR modulators.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Transducción de Señal , Mutación , Adenosina Trifosfato , Pliegue de Proteína
5.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36499495

RESUMEN

Mutations in CFTR cause misfolding and decreased or absent ion-channel function, resulting in the disease Cystic Fibrosis. Fortunately, a triple-modulator combination therapy (Trikafta) has been FDA-approved for 178 mutations, including all patients who have F508del on one allele. That so many CFTR mutants respond well to modulators developed for a single mutation is due to the nature of the folding process of this multidomain protein. We have addressed the question 'What characterizes the exceptions: the mutants that functionally respond either not or extremely well'. A functional response is the product of the number of CFTR molecules on the cell surface, open probability, and conductivity of the CFTR chloride channel. By combining biosynthetic radiolabeling with protease-susceptibility assays, we have followed CF-causing mutants during the early and late stages of folding in the presence and absence of modulators. Most CFTR mutants showed typical biochemical responses for each modulator, such as a TMD1 conformational change or an increase in (cell-surface) stability, regardless of a functional response. These modulators thus should still be considered for hypo-responder genotypes. Understanding both biochemical and functional phenotypes of outlier mutations will boost our insights into CFTR folding and misfolding, and lead to improved therapeutic strategies.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Benzodioxoles/uso terapéutico , Fenotipo , Mutación
7.
J Mol Biol ; 433(13): 166955, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33771570

RESUMEN

ABC transporters transport a wealth of molecules across membranes and consist of transmembrane and cytosolic domains. Their activity cycle involves a tightly regulated and concerted domain choreography. Regulation is driven by the cytosolic domains and function by the transmembrane domains. Folding of these polytopic multidomain proteins to their functional state is a challenge for cells, which is mitigated by co-translational and sequential events. We here reveal the first stages of co-translational domain folding and assembly of CFTR, the ABC transporter defective in the most abundant rare inherited disease cystic fibrosis. We have combined biosynthetic radiolabeling with protease-susceptibility assays and domain-specific antibodies. The most N-terminal domain, TMD1 (transmembrane domain 1), folds both its hydrophobic and soluble helices during translation: the transmembrane helices pack tightly and the cytosolic N- and C-termini assemble with the first cytosolic helical loop ICL1, leaving only ICL2 exposed. This N-C-ICL1 assembly is strengthened by two independent events: (i) assembly of ICL1 with the N-terminal subdomain of the next domain, cytosolic NBD1 (nucleotide-binding domain 1); and (ii) in the presence of corrector drug VX-809, which rescues cell-surface expression of a range of disease-causing CFTR mutants. Both lead to increased shielding of the CFTR N-terminus, and their additivity implies different modes of action. Early assembly of NBD1 and TMD1 is essential for CFTR folding and positions both domains for the required assembly with TMD2. Altogether, we have gained insights into this first, nucleating, VX-809-enhanced domain-assembly event during and immediately after CFTR translation, involving structures conserved in type-I ABC exporters.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Citosol/metabolismo , Biosíntesis de Proteínas , Pliegue de Proteína , Aminopiridinas/farmacología , Benzodioxoles/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/biosíntesis , Evolución Molecular , Genes Supresores , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Péptido Hidrolasas/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Dominios Proteicos , Pliegue de Proteína/efectos de los fármacos , Estructura Secundaria de Proteína
8.
Am J Physiol Lung Cell Mol Physiol ; 320(2): L288-L300, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33296276

RESUMEN

Cystic fibrosis (CF) arises from mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in progressive and life-limiting respiratory disease. R751L is a rare CFTR mutation that is poorly characterized. Our aims were to describe the clinical and molecular phenotypes associated with R751L. Relevant clinical data were collected from three heterozygote individuals harboring R751L (2 patients with G551D/R751L and 1 with F508del/R751L). Assessment of R751L-CFTR function was made in primary human bronchial epithelial cultures (HBEs) and Xenopus oocytes. Molecular properties of R751L-CFTR were investigated in the presence of known CFTR modulators. Although sweat chloride was elevated in all three patients, the clinical phenotype associated with R751L was mild. Chloride secretion in F508del/R751L HBEs was reduced compared with non-CF HBEs and associated with a reduction in sodium absorption by the epithelial sodium channel (ENaC). However, R751L-CFTR function in Xenopus oocytes, together with folding and cell surface transport of R751L-CFTR, was not different from wild-type CFTR. Overall, R751L-CFTR was associated with reduced sodium chloride absorption but had functional properties similar to wild-type CFTR. This is the first report of R751L-CFTR that combines clinical phenotype with characterization of functional and biological properties of the mutant channel. Our work will build upon existing knowledge of mutations within this region of CFTR and, importantly, inform approaches for clinical management. Elevated sweat chloride and reduced chloride secretion in HBEs may be due to alternative non-CFTR factors, which require further investigation.


Asunto(s)
Bronquios , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Células Epiteliales , Mutación Missense , Cloruro de Sodio/metabolismo , Sustitución de Aminoácidos , Animales , Bronquios/metabolismo , Bronquios/patología , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Humanos , Masculino , Xenopus laevis
9.
Environ Microbiol ; 22(6): 1997-2000, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32342578

RESUMEN

The current SARS-CoV-2 pandemic is wreaking havoc throughout the world and has rapidly become a global health emergency. A central question concerning COVID-19 is why some individuals become sick and others not. Many have pointed already at variation in risk factors between individuals. However, the variable outcome of SARS-CoV-2 infections may, at least in part, be due also to differences between the viral subspecies with which individuals are infected. A more pertinent question is how we are to overcome the current pandemic. A vaccine against SARS-CoV-2 would offer significant relief, although vaccine developers have warned that design, testing and production of vaccines may take a year if not longer. Vaccines are based on a handful of different designs (i), but the earliest vaccines were based on the live, attenuated virus. As has been the case for other viruses during earlier pandemics, SARS-CoV-2 will mutate and may naturally attenuate over time (ii). What makes the current pandemic unique is that, thanks to state-of-the-art nucleic acid sequencing technologies, we can follow in detail how SARS-CoV-2 evolves while it spreads. We argue that knowledge of naturally emerging attenuated SARS-CoV-2 variants across the globe should be of key interest in our fight against the pandemic.


Asunto(s)
Betacoronavirus , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , COVID-19 , Infecciones por Coronavirus , Brotes de Enfermedades , Humanos , Pandemias , Neumonía Viral , SARS-CoV-2
11.
Protein Sci ; 28(7): 1276-1289, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31050855

RESUMEN

The Canopy (CNPY) family consists of four members predicted to be soluble proteins localized to the endoplasmic reticulum (ER). They are involved in a wide array of processes, including angiogenesis, cell adhesion, and host defense. CNPYs are thought to do so via regulation of secretory transport of a diverse group of proteins, such as immunoglobulin M, growth factor receptors, toll-like receptors, and the low-density lipoprotein receptor. Thus far, a comparative analysis of the mammalian CNPY family is missing. Bioinformatic analysis shows that mammalian CNPYs, except the CNPY1 homolog, have N-terminal signal sequences and C-terminal ER-retention signals and that mammals have an additional member CNPY5, also known as plasma cell-induced ER protein 1/marginal zone B cell-specific protein 1. Canopy proteins are particularly homologous in four hydrophobic alpha-helical regions and contain three conserved disulfide bonds. This sequence signature is characteristic for the saposin-like superfamily and strongly argues that CNPYs share this common saposin fold. We showed that CNPY2, 3, 4, and 5 (termed CNPYs) localize to the ER. In radioactive pulse-chase experiments, we found that CNPYs rapidly form disulfide bonds and fold within minutes into their native forms. Disulfide bonds in native CNPYs remain sensitive to low concentrations of dithiothreitol (DTT) suggesting that the cysteine residues forming them are relatively accessible to solutes. Possible roles of CNPYs in the folding of secretory proteins in the ER are discussed.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Biología Computacional , Disulfuros/química , Disulfuros/metabolismo , Retículo Endoplásmico/metabolismo , Células HeLa , Humanos , Pliegue de Proteína
13.
Life Sci Alliance ; 2(1)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30659068

RESUMEN

Cystic fibrosis is caused by mutations in the CFTR gene, which are subdivided into six classes. Mutants of classes III and IV reach the cell surface but have limited function. Most class-III and class-IV mutants respond well to the recently approved potentiator VX-770, which opens the channel. We here revisited function and folding of some class-IV mutants and discovered that R347P is the only one that leads to major defects in folding. By this criterion and by its functional response to corrector drug VX-809, R347P qualifies also as a class-II mutation. Other class-IV mutants folded like wild-type CFTR and responded similarly to VX-809, demonstrating how function and folding are connected. Studies on both types of defects complement each other in understanding how compounds improve mutant CFTR function. This provides an attractive unbiased approach for characterizing mode of action of novel therapeutic compounds and helps address which drugs are efficacious for each cystic fibrosis disease variant.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Fibrosis Quística/patología , Pliegue de Proteína/efectos de los fármacos , Alelos , Aminofenoles/farmacología , Aminopiridinas/farmacología , Benzodioxoles/farmacología , Biopsia , Regulador de Conductancia de Transmembrana de Fibrosis Quística/clasificación , Genotipo , Células HEK293 , Humanos , Mutación , Organoides/efectos de los fármacos , Estructura Terciaria de Proteína/efectos de los fármacos , Quinolonas/farmacología , Recto/patología , Transfección
14.
Trends Cell Biol ; 28(10): 761-763, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30185380

RESUMEN

Lysosome function and position in the cytoplasm depends on the BORCS machinery, which tethers lysosomes to the kinesin microtubule motor. A recent paper of Snouwaert et al. in Cell Reports characterizes a mouse with a spontaneous mutation in the Borcs7 subunit, which causes axonal dystrophy and impaired motor function.


Asunto(s)
Cinesinas/genética , Lisosomas , Animales , Citosol , Ratones , Microtúbulos , Mutación
15.
J Cell Sci ; 131(18)2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30154210

RESUMEN

Sorting endosomes (SEs) are the regulatory hubs for sorting cargo to multiple organelles, including lysosome-related organelles, such as melanosomes in melanocytes. In parallel, melanosome biogenesis is initiated from SEs with the processing and sequential transport of melanocyte-specific proteins toward maturing melanosomes. However, the mechanism of cargo segregation on SEs is largely unknown. Here, RNAi screening in melanocytes revealed that knockdown of Rab4A results in defective melanosome maturation. Rab4A-depletion increases the number of vacuolar endosomes and disturbs the cargo sorting, which in turn lead to the mislocalization of melanosomal proteins to lysosomes, cell surface and exosomes. Rab4A localizes to the SEs and forms an endosomal complex with the adaptor AP-3, the effector rabenosyn-5 and the motor KIF3, which possibly coordinates cargo segregation on SEs. Consistent with this, inactivation of rabenosyn-5, KIF3A or KIF3B phenocopied the defects observed in Rab4A-knockdown melanocytes. Further, rabenosyn-5 was found to associate with rabaptin-5 or Rabip4/4' (isoforms encoded by Rufy1) and differentially regulate cargo sorting from SEs. Thus, Rab4A acts a key regulator of cargo segregation on SEs.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Endosomas/metabolismo , Lisosomas/metabolismo , Proteínas de Unión al GTP rab4/metabolismo , Humanos
16.
J Immunol ; 201(2): 700-713, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29884704

RESUMEN

In the immune system, degranulation/exocytosis from lymphocytes is crucial for life through facilitating eradication of infected and malignant cells. Dysfunction of the NK cell exocytosis process has been implicated with devastating immune diseases, such as familial hemophagocytic lymphohistiocytosis, yet the underlying molecular mechanisms of such processes have remained elusive. In particular, although the lytic granule exocytosis from NK cells is strictly Ca2+-dependent, the molecular identity of the Ca2+ sensor has yet to be identified. In this article, we show multiple lines of evidence in which point mutations in aspartic acid residues in both C2 domains of human Munc13-4, whose mutation underlies familial hemophagocytic lymphohistiocytosis type 3, diminished exocytosis with dramatically altered Ca2+ sensitivity in both mouse primary NK cells as well as rat mast cell lines. Furthermore, these mutations within the C2 domains severely impaired NK cell cytotoxicity against malignant cells. Total internal reflection fluorescence microscopy analysis revealed that the mutations strikingly altered Ca2+ dependence of fusion pore opening of each single granule and frequency of fusion events. Our results demonstrate that both C2 domains of Munc13-4 play critical roles in Ca2+-dependent exocytosis and cytotoxicity by regulating single-granule membrane fusion dynamics in immune cells.


Asunto(s)
Células Asesinas Naturales/inmunología , Linfohistiocitosis Hemofagocítica/inmunología , Mastocitos/inmunología , Proteínas de la Membrana/metabolismo , Vesículas Secretoras/metabolismo , Animales , Ácido Aspártico/genética , Señalización del Calcio , Degranulación de la Célula , Células Cultivadas , Citotoxicidad Inmunológica , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mutación/genética , Dominios Proteicos/genética , Ratas
17.
Nat Commun ; 9(1): 792, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29476049

RESUMEN

Recycling endosomes maintain plasma membrane homeostasis and are important for cell polarity, migration, and cytokinesis. Yet, the molecular machineries that drive endocytic recycling remain largely unclear. The CORVET complex is a multi-subunit tether required for fusion between early endosomes. Here we show that the CORVET-specific subunits Vps3 and Vps8 also regulate vesicular transport from early to recycling endosomes. Vps3 and Vps8 localise to Rab4-positive recycling vesicles and co-localise with the CHEVI complex on Rab11-positive recycling endosomes. Depletion of Vps3 or Vps8 does not affect transferrin recycling, but delays the delivery of internalised integrins to recycling endosomes and their subsequent return to the plasma membrane. Consequently, Vps3/8 depletion results in defects in integrin-dependent cell adhesion and spreading, focal adhesion formation, and cell migration. These data reveal a role for Vps3 and Vps8 in a specialised recycling pathway important for integrin trafficking.


Asunto(s)
Endosomas/metabolismo , Integrina beta1/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Adhesión Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Movimiento Celular , Endosomas/genética , Células HeLa , Humanos , Integrina beta1/genética , Transporte de Proteínas , Proteínas de Transporte Vesicular/genética
18.
Hum Mutat ; 39(3): 333-344, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29266534

RESUMEN

Microvillus inclusion disease (MVID) is a rare but fatal autosomal recessive congenital diarrheal disorder caused by MYO5B mutations. In 2013, we launched an open-access registry for MVID patients and their MYO5B mutations (www.mvid-central.org). Since then, additional unique MYO5B mutations have been identified in MVID patients, but also in non-MVID patients. Animal models have been generated that formally prove the causality between MYO5B and MVID. Importantly, mutations in two other genes, STXBP2 and STX3, have since been associated with variants of MVID, shedding new light on the pathogenesis of this congenital diarrheal disorder. Here, we review these additional genes and their mutations. Furthermore, we discuss recent data from cell studies that indicate that the three genes are functionally linked and, therefore, may constitute a common disease mechanism that unifies a subset of phenotypically linked congenital diarrheal disorders. We present new data based on patient material to support this. To congregate existing and future information on MVID geno-/phenotypes, we have updated and expanded the MVID registry to include all currently known MVID-associated gene mutations, their demonstrated or predicted functional consequences, and associated clinical information.


Asunto(s)
Diarrea/congénito , Diarrea/genética , Predisposición Genética a la Enfermedad , Proteínas Munc18/genética , Mutación/genética , Miosina Tipo V/genética , Proteínas Qa-SNARE/genética , Animales , Humanos
19.
Mol Biol Cell ; 28(12): 1688-1700, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28450451

RESUMEN

Endothelial cells respond to blood vessel injury by the acute release of the procoagulant von Willebrand factor, which is stored in unique secretory granules called Weibel-Palade bodies (WPBs). Stimulated WPB exocytosis critically depends on their proper recruitment to the plasma membrane, but factors involved in WPB-plasma membrane tethering are not known. Here we identify Munc13-4, a protein mutated in familial hemophagocytic lymphohistiocytosis 3, as a WPB-tethering factor. Munc13-4 promotes histamine-evoked WPB exocytosis and is present on WPBs, and secretagogue stimulation triggers an increased recruitment of Munc13-4 to WPBs and a clustering of Munc13-4 at sites of WPB-plasma membrane contact. We also identify the S100A10 subunit of the annexin A2 (AnxA2)-S100A10 protein complex as a novel Munc13-4 interactor and show that AnxA2-S100A10 participates in recruiting Munc13-4 to WPB fusion sites. These findings indicate that Munc13-4 supports acute WPB exocytosis by tethering WPBs to the plasma membrane via AnxA2-S100A10.


Asunto(s)
Anexina A2/metabolismo , Células Endoteliales/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas S100/metabolismo , Cuerpos de Weibel-Palade/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Exocitosis/fisiología , Histamina/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Unión Proteica , Transporte de Proteínas , Factor de von Willebrand/metabolismo
20.
Traffic ; 16(12): 1288-305, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26403612

RESUMEN

Lysosomes are the main degradative compartments of eukaryotic cells. The CORVET and HOPS tethering complexes are well known for their role in membrane fusion in the yeast endocytic pathway. Yeast Vps33p is part of both complexes, and has two mammalian homologues: Vps33A and Vps33B. Vps33B is required for recycling of apical proteins in polarized cells and a causative gene for ARC syndrome. Here, we investigate whether Vps33B is also required in the degradative pathway. By fluorescence and electron microscopy we show that Vps33B depletion in HeLa cells leads to significantly increased numbers of late endosomes that together with lysosomes accumulate in the perinuclear region. Degradation of endocytosed cargo is impaired in these cells. By electron microscopy we show that endocytosed BSA-gold reaches late endosomes, but is decreased in lysosomes. The increase in late endosome numbers and the lack of internalized cargo in lysosomes are indicative for a defect in late endosomal-lysosomal fusion events, which explains the observed decrease in cargo degradation. A corresponding phenotype was found after Vps33A knock down, which in addition also resulted in decreased lysosome numbers. We conclude that Vps33B, in addition to its role in endosomal recycling, is required for late endosomal-lysosomal fusion events.


Asunto(s)
Endocitosis/fisiología , Endosomas/metabolismo , Lisosomas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Endosomas/ultraestructura , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Lisosomas/ultraestructura , Fusión de Membrana/fisiología , Microscopía Electrónica , Microscopía Fluorescente , Transporte de Proteínas , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...