Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Mov Disord ; 36(3): 729-739, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33200438

RESUMEN

BACKGROUND: We describe a 4-generation Dutch pedigree with a unique dominantly inherited clinical phenotype of a combined progressive chorea and cervical dystonia carrying a novel heterozygous dopamine D2 receptor (DRD2) variant. OBJECTIVES: The objective of this study was to identify the genetic cause of the disease and to further investigate the functional consequences of the genetic variant. METHODS: After detailed clinical and neurological examination, whole-exome sequencing was performed. Because a novel variant in the DRD2 gene was found as the likely causative gene defect in our pedigree, we sequenced the DRD2 gene in a cohort of 121 Huntington-like cases with unknown genetic cause (Germany). Moreover, functional characterization of the DRD2 variant included arrestin recruitment, G protein activation, and G protein-mediated inhibition of adenylyl cyclase determined in a cell model, and G protein-regulated inward-rectifying potassium channels measured in midbrain slices of mice. RESULT: We identified a novel heterozygous variant c.634A > T, p.Ile212Phe in exon 5 of DRD2 that cosegregated with the clinical phenotype. Screening of the German cohort did not reveal additional putative disease-causing variants. We demonstrated that the D2S/L -I212 F receptor exhibited increased agonist potency and constitutive activation of G proteins in human embryonic kidney 239 cells as well as significantly reduced arrestin3 recruitment. We further showed that the D2S -I212 F receptor exhibited aberrant receptor function in mouse midbrain slices. CONCLUSIONS: Our results support an association between the novel p.Ile212Phe variant in DRD2, its modified D2 receptor activity, and the hyperkinetic movement disorder reported in the 4-generation pedigree. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Corea , Distonía , Animales , Corea/genética , Mutación con Ganancia de Función , Alemania , Ratones , Fenotipo , Receptores de Dopamina D2/genética
3.
BMC Neurol ; 19(1): 233, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31607263

RESUMEN

BACKGROUND: Neurodegeneration with brain iron accumulation (NBIA) is characterized by pathological iron accumulation in the subcortical nuclei and the cortex. As age-related iron accumulation studies in these structures are lacking in healthy aging, we aimed to characterize the dynamics of age-dependent iron accumulation in subcortical nuclei in healthy aging and selected NBIA cases. This is fundamental to understand the natural age-related iron deposition in the healthy brain prior to using this marker as a potential prognostic or diagnostic tool in neurodegenerative disorders. METHODS: Susceptibility-weighted imaging (SWI) scans from 81 healthy volunteers (0-79 years) and four genetically confirmed patients suffering from NBIA (2-14 years) were obtained. We scored the presence or absence of pencil lining of the motor cortex and putamen and analyzed the normalized SWI signal intensity ratio (NSIR) in five subcortical nuclei. RESULTS: In healthy subjects, an age-dependent increase of pencil lining occurred starting from the second decade of life and was present in all cases at the age of 50. In their first decade, NBIA patients showed no cortical pencil lining, but we did observe putaminal pencil lining at this stage. In healthy subjects, age and NSIR of all nuclei correlated positively and was particularly dynamic in early childhood until young adulthood in the globus pallidus, dentate nucleus and red nucleus, but not in the caudate nucleus and putamen. NBIA patients showed an increased NSIR in the globus pallidus only and not in the other subcortical nuclei compared to age-matched healthy subjects. CONCLUSIONS: Cortical pencil lining is part of healthy aging. This should be considered when assessing this as a potential marker in NBIA diagnosis and prognosis. Putaminal pencil lining has the potential to become a specific marker for some subtypes of NBIA in the first decade of life, as it was only observed in NBIA and not in age-matched healthy subjects. NSIR in the subcortical nuclei during healthy aging was shown to be dynamic, accentuating the importance of having an age-dependent baseline.


Asunto(s)
Encéfalo/patología , Envejecimiento Saludable/patología , Hierro/análisis , Enfermedades Neurodegenerativas/patología , Adulto , Anciano , Encéfalo/diagnóstico por imagen , Niño , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Enfermedades Neurodegenerativas/diagnóstico por imagen , Adulto Joven
4.
Mol Genet Genomic Med ; 7(7): e00736, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31087512

RESUMEN

BACKGROUND: Mitochondrial membrane protein-associated neurodegeneration (MPAN) is caused by pathogenic sequence variants in C19orf12. Autosomal recessive inheritance has been demonstrated. We present evidence of autosomal dominant MPAN and propose a mechanism to explain these cases. METHODS: Two large families with apparently dominant MPAN were investigated; additional singleton cases of MPAN were identified. Gene sequencing and multiplex ligation-dependent probe amplification were used to characterize the causative sequence variants in C19orf12. Post-mortem brain from affected subjects was examined. RESULTS: In two multi-generation non-consanguineous families, we identified different nonsense sequence variations in C19orf12 that segregate with the MPAN phenotype. Brain pathology was similar to that of autosomal recessive MPAN. We additionally identified a preponderance of cases with single heterozygous pathogenic sequence variants, including two with de novo changes. CONCLUSIONS: We present three lines of clinical evidence to demonstrate that MPAN can manifest as a result of only one pathogenic C19orf12 sequence variant. We propose that truncated C19orf12 proteins, resulting from nonsense variants in the final exon in our autosomal dominant cohort, impair function of the normal protein produced from the non-mutated allele via a dominant negative mechanism and cause loss of function. These findings impact the clinical diagnostic evaluation and counseling.


Asunto(s)
Trastornos del Metabolismo del Hierro/genética , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Distrofias Neuroaxonales/genética , Adulto , Encéfalo , Codón sin Sentido/genética , Estudios de Cohortes , Familia , Femenino , Genes Dominantes/genética , Heterocigoto , Humanos , Trastornos del Metabolismo del Hierro/metabolismo , Masculino , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Mutación , Distrofias Neuroaxonales/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...