Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338693

RESUMEN

The Gárdos channel (KCNN4) and Piezo1 are the best-known ion channels in the red blood cell (RBC) membrane. Nevertheless, the quantitative electrophysiological behavior of RBCs and its heterogeneity are still not completely understood. Here, we use state-of-the-art biochemical methods to probe for the abundance of the channels in RBCs. Furthermore, we utilize automated patch clamp, based on planar chips, to compare the activity of the two channels in reticulocytes and mature RBCs. In addition to this characterization, we performed membrane potential measurements to demonstrate the effect of channel activity and interplay on the RBC properties. Both the Gárdos channel and Piezo1, albeit their average copy number of activatable channels per cell is in the single-digit range, can be detected through transcriptome analysis of reticulocytes. Proteomics analysis of reticulocytes and mature RBCs could only detect Piezo1 but not the Gárdos channel. Furthermore, they can be reliably measured in the whole-cell configuration of the patch clamp method. While for the Gárdos channel, the activity in terms of ion currents is higher in reticulocytes compared to mature RBCs, for Piezo1, the tendency is the opposite. While the interplay between Piezo1 and Gárdos channel cannot be followed using the patch clamp measurements, it could be proved based on membrane potential measurements in populations of intact RBCs. We discuss the Gárdos channel and Piezo1 abundance, interdependencies and interactions in the context of their proposed physiological and pathophysiological functions, which are the passing of small constrictions, e.g., in the spleen, and their active participation in blood clot formation and thrombosis.


Asunto(s)
Eritrocitos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio , Reticulocitos , Transporte Biológico , Calcio/metabolismo , Eritrocitos/metabolismo , Reticulocitos/metabolismo , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Canales Iónicos/metabolismo
3.
Blood Adv ; 7(23): 7169-7183, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-37792794

RESUMEN

E-cadherin is a crucial regulator of epithelial cell-to-cell adhesion and an established tumor suppressor. Aside epithelia, E-cadherin expression marks the erythroid cell lineage during human but not mouse hematopoiesis. However, the role of E-cadherin in human erythropoiesis remains unknown. Because rat erythropoiesis was postulated to reflect human erythropoiesis more closely than mouse erythropoiesis, we investigated E-cadherin expression in rat erythroid progenitors. E-cadherin expression is conserved within the erythroid lineage between rat and human. In response to anemia, erythroblasts in rat bone marrow (BM) upregulate E-cadherin as well as its binding partner ß-catenin. CRISPR/Cas9-mediated knock out of E-cadherin revealed that E-cadherin expression is required to stabilize ß-catenin in human and rat erythroblasts. Suppression of ß-catenin degradation by glycogen synthase kinase 3ß (GSK3ß) inhibitor CHIR99021 also enhances ß-catenin stability in human erythroblasts but hampers erythroblast differentiation and survival. In contrast, direct activation of ß-catenin signaling, using an inducible, stable ß-catenin variant, does not perturb maturation or survival of human erythroblasts but rather enhances their differentiation. Although human erythroblasts do not respond to Wnt ligands and direct GSK3ß inhibition even reduces their survival, we postulate that ß-catenin stability and signaling is mostly controlled by E-cadherin in human and rat erythroblasts. In response to anemia, E-cadherin-driven upregulation and subsequent activation of ß-catenin signaling may stimulate erythroblast differentiation to support stress erythropoiesis in the BM. Overall, we uncover E-cadherin/ß-catenin expression to mark stress erythropoiesis in rat BM. This may provide further understanding of the underlying molecular regulation of stress erythropoiesis in the BM, which is currently poorly understood.


Asunto(s)
Anemia , beta Catenina , Humanos , Ratas , Ratones , Animales , beta Catenina/metabolismo , Eritropoyesis/fisiología , Glucógeno Sintasa Quinasa 3 beta , Cadherinas/genética , Cadherinas/metabolismo
4.
Sci Rep ; 13(1): 6960, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117329

RESUMEN

Iron, supplemented as iron-loaded transferrin (holotransferrin), is an essential nutrient in mammalian cell cultures, particularly for erythroid cultures. The high cost of human transferrin represents a challenge for large scale production of red blood cells (RBCs) and for cell therapies in general. We evaluated the use of deferiprone, a cell membrane-permeable drug for iron chelation therapy, as an iron carrier for erythroid cultures. Iron-loaded deferiprone (Def3·Fe3+, at 52 µmol/L) could eliminate the need for holotransferrin supplementation during in vitro expansion and differentiation of erythroblast cultures to produce large numbers of enucleated RBC. Only the first stage, when hematopoietic stem cells committed to erythroblasts, required holotransferrin supplementation. RBCs cultured in presence of Def3·Fe3+ or holotransferrin (1000 µg/mL) were similar with respect to differentiation kinetics, expression of cell-surface markers CD235a and CD49d, hemoglobin content, and oxygen association/dissociation. Replacement of holotransferrin supplementation by Def3·Fe3+ was also successful in cultures of myeloid cell lines (MOLM13, NB4, EOL1, K562, HL60, ML2). Thus, iron-loaded deferiprone can partially replace holotransferrin as a supplement in chemically defined cell culture medium. This holds promise for a significant decrease in medium cost and improved economic perspectives of the large scale production of red blood cells for transfusion purposes.


Asunto(s)
Eritrocitos , Hierro , Animales , Humanos , Hierro/metabolismo , Deferiprona/farmacología , Eritrocitos/metabolismo , Quelantes del Hierro/uso terapéutico , Hemoglobinas/metabolismo , Células Cultivadas , Mamíferos/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(4): e2216055120, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36669105

RESUMEN

DNA damage threatens genomic integrity and instigates stem cell failure. To bypass genotoxic lesions during replication, cells employ DNA damage tolerance (DDT), which is regulated via PCNA ubiquitination and REV1. DDT is conserved in all domains of life, yet its relevance in mammals remains unclear. Here, we show that inactivation of both PCNA-ubiquitination and REV1 results in embryonic and adult lethality, and the accumulation of DNA damage in hematopoietic stem and progenitor cells (HSPCs) that ultimately resulted in their depletion. Our results reveal the crucial relevance of DDT in the maintenance of stem cell compartments and mammalian life in unperturbed conditions.


Asunto(s)
Daño del ADN , Animales , Reparación del ADN , Replicación del ADN , Células Madre Hematopoyéticas/metabolismo , Mamíferos/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ubiquitinación
6.
Biotechnol Bioeng ; 119(11): 3096-3116, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35879812

RESUMEN

Transfusion of donor-derived red blood cells (RBCs) is the most common form of cell therapy. Production of transfusion-ready cultured RBCs (cRBCs) is a promising replacement for the current, fully donor-dependent therapy. A single transfusion unit, however, contains 2 × 1012 RBC, which requires large scale production. Here, we report on the scale-up of cRBC production from static cultures of erythroblasts to 3 L stirred tank bioreactors, and identify the effect of operating conditions on the efficiency of the process. Oxygen requirement of proliferating erythroblasts (0.55-2.01 pg/cell/h) required sparging of air to maintain the dissolved oxygen concentration at the tested setpoint (2.88 mg O2 /L). Erythroblasts could be cultured at dissolved oxygen concentrations as low as 0.7 O2 mg/ml without negative impact on proliferation, viability or differentiation dynamics. Stirring speeds of up to 600 rpm supported erythroblast proliferation, while 1800 rpm led to a transient halt in growth and accelerated differentiation followed by a recovery after 5 days of culture. Erythroblasts differentiated in bioreactors, with final enucleation levels and hemoglobin content similar to parallel cultures under static conditions.


Asunto(s)
Reactores Biológicos , Eritroblastos , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Hemoglobinas , Oxígeno
8.
Front Physiol ; 13: 824478, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35177994

RESUMEN

Erythrocytes represent at least 60% of all cells in the human body. During circulation, they experience a huge variety of physical and chemical stimulations, such as pressure, shear stress, hormones or osmolarity changes. These signals are translated into cellular responses through ion channels that modulate erythrocyte function. Ion channels in erythrocytes are only recently recognized as utmost important players in physiology and pathophysiology. Despite this awareness, their signaling, interactions and concerted regulation, such as the generation and effects of "pseudo action potentials", remain elusive. We propose a systematic, conjoined approach using molecular biology, in vitro erythropoiesis, state-of-the-art electrophysiological techniques, and channelopathy patient samples to decipher the role of ion channel functions in health and disease. We need to overcome challenges such as the heterogeneity of the cell population (120 days lifespan without protein renewal) or the access to large cohorts of patients. Thereto we will use genetic manipulation of progenitors, cell differentiation into erythrocytes, and statistically efficient electrophysiological recordings of ion channel activity.

9.
Hemasphere ; 6(2): e670, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35098039

RESUMEN

In 2016, the European Hematology Association (EHA) published the EHA Roadmap for European Hematology Research 1 aiming to highlight achievements in the diagnostics and treatment of blood disorders, and to better inform European policy makers and other stakeholders about the urgent clinical and scientific needs and priorities in the field of hematology. Each section was coordinated by 1-2 section editors who were leading international experts in the field. In the 5 years that have followed, advances in the field of hematology have been plentiful. As such, EHA is pleased to present an updated Research Roadmap, now including eleven sections, each of which will be published separately. The updated EHA Research Roadmap identifies the most urgent priorities in hematology research and clinical science, therefore supporting a more informed, focused, and ideally a more funded future for European hematology research. The 11 EHA Research Roadmap sections include Normal Hematopoiesis; Malignant Lymphoid Diseases; Malignant Myeloid Diseases; Anemias and Related Diseases; Platelet Disorders; Blood Coagulation and Hemostatic Disorders; Transfusion Medicine; Infections in Hematology; Hematopoietic Stem Cell Transplantation; CAR-T and Other Cell-based Immune Therapies; and Gene Therapy.

10.
Sci Rep ; 12(1): 336, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013432

RESUMEN

Haploinsufficiency for the erythroid-specific transcription factor KLF1 is associated with hereditary persistence of fetal hemoglobin (HPFH). Increased HbF ameliorates the symptoms of ß-hemoglobinopathies and downregulation of KLF1 activity has been proposed as a potential therapeutic strategy. However, the feasibility of this approach has been challenged by the observation that KLF1 haploinsufficient individuals with the same KLF1 variant, within the same family, display a wide range of HbF levels. This phenotypic variability is not readily explained by co-inheritance of known HbF-modulating variants in the HBB, HBS1L-MYB and/or BCL11A loci. We studied cultured erythroid progenitors obtained from Maltese individuals in which KLF1 p.K288X carriers display HbF levels ranging between 1.3 and 12.3% of total Hb. Using a combination of gene expression analysis, chromatin accessibility assays and promoter activity tests we find that variation in expression of the wildtype KLF1 allele may explain a significant part of the variability in HbF levels observed in KLF1 haploinsufficiency. Our results have general bearing on the variable penetrance of haploinsufficiency phenotypes and on conflicting interpretations of pathogenicity of variants in other transcriptional regulators such as EP300, GATA2 and RUNX1.


Asunto(s)
Epigénesis Genética , Epigenoma , Epigenómica , Eritroblastos/metabolismo , Haploinsuficiencia , Hemoglobinopatías/genética , Factores de Transcripción de Tipo Kruppel/genética , Células Cultivadas , Secuenciación de Inmunoprecipitación de Cromatina , Eritroblastos/patología , Eritropoyesis/genética , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Predisposición Genética a la Enfermedad , Hemoglobinopatías/sangre , Hemoglobinopatías/diagnóstico , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Malta , Penetrancia , Fenotipo , Cultivo Primario de Células , RNA-Seq
11.
RNA ; 28(2): 194-209, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34732567

RESUMEN

Each day, about 1012 erythrocytes and platelets are released into the bloodstream. This substantial output from hematopoietic stem cells is tightly regulated by transcriptional and epigenetic factors. Whether and how circular RNAs (circRNAs) contribute to the differentiation and/or identity of hematopoietic cells is to date not known. We recently reported that erythrocytes and platelets contain the highest levels and numbers of circRNAs among hematopoietic cells. Here, we provide the first detailed analysis of circRNA expression during erythroid and megakaryoid differentiation. CircRNA expression not only significantly increased upon enucleation, but also had limited overlap between progenitor cells and mature cells, suggesting that circRNA expression stems from regulated processes rather than resulting from mere accumulation. To study circRNA function in hematopoiesis, we first compared the expression levels of circRNAs with the translation efficiency of their mRNA counterpart. We found that only one out of 2531 (0.04%) circRNAs associated with mRNA-translation regulation. Furthermore, irrespective of thousands of identified putative open reading frames, deep ribosome-footprinting sequencing, and mass spectrometry analysis provided little evidence for translation of endogenously expressed circRNAs. In conclusion, circRNAs alter their expression profile during terminal hematopoietic differentiation, yet their contribution to regulate cellular processes remains enigmatic.


Asunto(s)
Hematopoyesis , ARN Circular/metabolismo , ARN Mensajero/genética , Células Cultivadas , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Biosíntesis de Proteínas , ARN Circular/genética , ARN Mensajero/metabolismo , Transcriptoma
12.
Sci Rep ; 11(1): 18557, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34535703

RESUMEN

Beta-hemoglobinopathies become prominent after birth due to a switch from γ-globin to the mutated ß-globin. Haploinsufficiency for the erythroid specific indispensable transcription factor Krueppel-like factor 1 (KLF1) is associated with high persistence of fetal hemoglobin (HPFH). The In(Lu) phenotype, characterized by low to undetectable Lutheran blood group expression is caused by mutations within KLF1 gene. Here we screened a blood donor cohort of 55 Lutheran weak or negative donors for KLF1 variants and evaluated their effect on KLF1 target gene expression. To discriminate between weak and negative Lutheran expression, a flow cytometry (FCM) assay was developed to detect Lu antigen expression. The Lu(a-b-) (negative) donor group, showing a significant decreased CD44 (Indian blood group) expression, also showed increased HbF and HbA2 levels, with one individual expressing HbF as high as 5%. KLF1 exons and promoter sequencing revealed variants in 80% of the Lutheran negative donors. Thirteen different variants plus one high frequency SNP (c.304 T > C) were identified of which 6 were novel. In primary erythroblasts, knockdown of endogenous KLF1 resulted in decreased CD44, Lu and increased HbF expression, while KLF1 over-expressing cells were comparable to wild type (WT). In line with the pleiotropic effects of KLF1 during erythropoiesis, distinct KLF1 mutants expressed in erythroblasts display different abilities to rescue CD44 and Lu expression and/or to affect fetal (HbF) or adult (HbA) hemoglobin expression. With this study we identified novel KLF1 variants to be include into blood group typing analysis. In addition, we provide further insights into the regulation of genes by KLF1.


Asunto(s)
Moléculas de Adhesión Celular/genética , Hemoglobina Fetal/análisis , Factores de Transcripción de Tipo Kruppel/genética , Sistema del Grupo Sanguíneo Lutheran/genética , gamma-Globinas/análisis , Células Cultivadas , Células Eritroides/citología , Células Eritroides/metabolismo , Eritropoyesis , Hemoglobina Fetal/genética , Humanos , Mutación , Polimorfismo de Nucleótido Simple , gamma-Globinas/genética
13.
Stem Cell Res ; 55: 102442, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34224985

RESUMEN

Induced pluripotent stem cells (iPSCs) were generated from erythroblasts (EBLs) obtained from a patient diagnosed with Chédiak-Higashi Syndrome (CHS), caused by mutations in LYST (c.4322_4325delAGAG and c.10127A>G). EBLs were reprogrammed with CytoTune-iPS 2.0 Sendai Reprogramming Kit, where the generated iPSCs showed normal karyotype, expression of pluripotency associated markers and in vitro spontaneous differentiation towards the three germ layers. The generated iPSCs can be used to study CHS pathophysiology and the role of LYST in different cell types.


Asunto(s)
Síndrome de Chediak-Higashi , Células Madre Pluripotentes Inducidas , Diferenciación Celular , Síndrome de Chediak-Higashi/genética , Eritroblastos , Estratos Germinativos , Humanos
14.
Stem Cell Res ; 55: 102440, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34229202

RESUMEN

Induced pluripotent stem cell (iPSC) line was generated from erythroblasts (EBLs) derived from a patient diagnosed with severe congenital neutropenia, caused by mutations in ELANE (c.614delG). Transgene-free iPSC line was generated using Sendai virus reprogramming. The iPSC line showed normal karyotype, expressed pluripotency associated genes and was capable of in vitro spontaneous differentiation towards the three germ layers. The generated iPSC line can be used to study severe congenital neutropenia and the role of neutrophil elastase protein.


Asunto(s)
Células Madre Pluripotentes Inducidas , Diferenciación Celular , Reprogramación Celular , Humanos , Mutación , Virus Sendai/genética
15.
Stem Cell Res ; 55: 102443, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34237592

RESUMEN

Induced pluripotent stem cells (iPSCs) were generated from erythroblasts (EBLs) obtained from a patient diagnosed with Gray Platelet Syndrome (GPS), caused by compound heterozygous NBEAL2 mutations (c.6568delT and c.7937T>C). GPS is an autosomal recessive bleeding disorder characterized by a lack of α-granules in platelets and progressive myelofibrosis. EBLs were reprogrammed with CytoTune-iPS 2.0 Sendai Reprogramming Kit, where the generated iPSCs showed normal karyotype, expression of pluripotency associated markers and in vitro spontaneous differentiation towards the three germ layers. The generated iPSCs can be used to study GPS pathophysiology and the basic functions of NBEAL2 protein in different cell types.


Asunto(s)
Síndrome de Plaquetas Grises , Células Madre Pluripotentes Inducidas , Plaquetas , Proteínas Sanguíneas , Diferenciación Celular , Eritroblastos , Humanos , Mutación
16.
Stem Cell Res ; 54: 102444, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34182253

RESUMEN

Induced pluripotent stem cells (iPSCs) were generated from blood outgrowth endothelial cells (BOECs) obtained from a healthy donor and from a patient diagnosed with Hermansky Pudlak Syndrome type 2 (HPS2), caused by compound heterozygous AP3B1 mutations (c.177delA and c.1839-1842delTAGA). BOECs were reprogrammed with a hOKSM self-silencing polycistronic lentiviral vector, where the generated iPSCs showed normal karyotype, expression of pluripotency associated markers and in vitro spontaneous differentiation towards the three germ layers. The generated iPSCs can be used to study HPS2 pathophysiology and the basic functions of AP3B1 protein in different cell types.


Asunto(s)
Síndrome de Hermanski-Pudlak , Células Madre Pluripotentes Inducidas , Complejo 3 de Proteína Adaptadora/genética , Subunidades beta de Complejo de Proteína Adaptadora/genética , Diferenciación Celular , Células Endoteliales , Heterocigoto , Humanos , Mutación
17.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33478008

RESUMEN

Bioreactors are increasingly implemented for large scale cultures of various mammalian cells, which requires optimization of culture conditions. Such upscaling is also required to produce red blood cells (RBC) for transfusion and therapy purposes. However, the physiological suitability of RBC cultures to be transferred to stirred bioreactors is not well understood. PIEZO1 is the most abundantly expressed known mechanosensor on erythroid cells. It is a cation channel that translates mechanical forces directly into a physiological response. We investigated signaling cascades downstream of PIEZO1 activated upon transitioning stationary cultures to orbital shaking associated with mechanical stress, and compared the results to direct activation of PIEZO1 by the chemical agonist Yoda1. Erythroblasts subjected to orbital shaking displayed decreased proliferation, comparable to incubation in the presence of a low dose of Yoda1. Epo (Erythropoietin)-dependent STAT5 phosphorylation, and Calcineurin-dependent NFAT dephosphorylation was enhanced. Phosphorylation of ERK was also induced by both orbital shaking and Yoda1 treatment. Activation of these pathways was inhibited by intracellular Ca2+ chelation (BAPTA-AM) in the orbital shaker. Our results suggest that PIEZO1 is functional and could be activated by the mechanical forces in a bioreactor setup, and results in the induction of Ca2+-dependent signaling cascades regulating various aspects of erythropoiesis. With this study, we showed that Yoda1 treatment and mechanical stress induced via orbital shaking results in comparable activation of some Ca2+-dependent pathways, exhibiting that there are direct physiological outcomes of mechanical stress on erythroblasts.


Asunto(s)
Señalización del Calcio/fisiología , Eritroblastos/fisiología , Estrés Mecánico , Calcio/metabolismo , Calcio/farmacología , Técnicas de Cultivo de Célula , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Eritroblastos/efectos de los fármacos , Eritropoyesis/efectos de los fármacos , Eritropoyesis/fisiología , Humanos , Canales Iónicos/agonistas , Canales Iónicos/fisiología , Mecanotransducción Celular/efectos de los fármacos , Mecanotransducción Celular/fisiología , Pirazinas/farmacología , Rotación , Tiadiazoles/farmacología
18.
Sci Rep ; 11(1): 1507, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33452379

RESUMEN

In ß-hemoglobinopathies, reactivation of gamma- at the expense of beta-globin is a prominent therapeutic option. Expression of the globin genes is not strictly intrinsically regulated during erythropoiesis, supported by the observation that fetal erythroid cells switch to adult hemoglobin expression when injected in mice. We show cultured erythroblasts are a mix of HbA restrictive and HbA/HbF expressing cells and that the proportion of cells in the latter population depends on the starting material. Cultures started from CD34+ cells contain more HbA/HbF expressing cells compared to erythroblasts cultured from total peripheral blood mononuclear cells (PBMC). Depletion of CD14+ cells from PBMC resulted in higher HbF/HbA percentages. Conversely, CD34+ co-culture with CD14+ cells reduced the HbF/HbA population through cell-cell proximity, indicating that CD14+ actively repressed HbF expression in adult erythroid cultures. RNA-sequencing showed that HbA and HbA/HbF populations contain a limited number of differentially expressed genes, aside from HBG1/2. Co-culture of CD14+ cells with sorted uncommitted hematopoietic progenitors and CD34-CD36+ erythroblasts showed that hematopoietic progenitors prior to the hemoglobinized erythroid stages are more readily influenced by CD14+ cells to downregulate expression of HBG1/2, suggesting temporal regulation of these genes. This possibly provides a novel therapeutic avenue to develop ß-hemoglobinopathies treatments.


Asunto(s)
Eritropoyesis/genética , Receptores de Lipopolisacáridos/fisiología , gamma-Globinas/genética , Antígenos CD34/metabolismo , Diferenciación Celular , Células Cultivadas , Eritroblastos/citología , Células Precursoras Eritroides/metabolismo , Eritropoyesis/fisiología , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Humanos , Leucocitos Mononucleares/metabolismo , Receptores de Lipopolisacáridos/genética , Receptores de Lipopolisacáridos/inmunología , Monocitos/metabolismo , Factores de Transcripción/metabolismo , Globinas beta/metabolismo , gamma-Globinas/metabolismo
19.
Haematologica ; 106(2): 464-473, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32467144

RESUMEN

Haploinsufficiency for transcription factor KLF1 causes a variety of human erythroid phenotypes, such as the In(Lu) blood type, increased HbA2 levels, and hereditary persistence of fetal hemoglobin. Severe dominant congenital dyserythropoietic anemia IV (OMIM 613673) is associated with the KLF1 p.E325K variant. CDA-IV patients display ineffective erythropoiesis and hemolysis resulting in anemia, accompanied by persistent high levels of embryonic and fetal hemoglobin. The mouse Nan strain carries a variant in the orthologous residue, KLF1 p.E339D. Klf1Nan causes dominant hemolytic anemia with many similarities to CDA-IV. Here we investigated the impact of Klf1Nan on the developmental expression patterns of the endogenous beta-like and alpha-like globins, and the human beta-like globins carried on a HBB locus transgene. We observe that the switch from primitive, yolk sac-derived, erythropoiesis to definitive, fetal liver-derived, erythropoiesis is delayed in Klf1wt/Nan embryos. This is reflected in globin expression patterns measured between E12.5 and E14.5. Cultured Klf1wt/Nan E12.5 fetal liver cells display growth- and differentiation defects. These defects likely contribute to the delayed appearance of definitive erythrocytes in the circulation of Klf1wt/Nan embryos. After E14.5, expression of the embryonic/fetal globin genes is silenced rapidly. In adult Klf1wt/Nan animals, silencing of the embryonic/fetal globin genes is impeded, but only minute amounts are expressed. Thus, in contrast to human KLF1 p.E325K, mouse KLF1 p.E339D does not lead to persistent high levels of embryonic/fetal globins. Our results support the notion that KLF1 affects gene expression in a variant-specific manner, highlighting the necessity to characterize KLF1 variant-specific phenotypes of patients in detail.


Asunto(s)
Anemia Diseritropoyética Congénita , Factores de Transcripción de Tipo Kruppel , Adulto , Animales , Diferenciación Celular , Eritropoyesis/genética , Hemoglobinas , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Ratones
20.
Int J Mol Sci ; 21(3)2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32024018

RESUMEN

Megakaryopoiesis is the process during which megakaryoblasts differentiate to polyploid megakaryocytes that can subsequently shed thousands of platelets in the circulation. Megakaryocytes accumulate mRNA during their maturation, which is required for the correct spatio-temporal production of cytoskeletal proteins, membranes and platelet-specific granules, and for the subsequent shedding of thousands of platelets per cell. Gene expression profiling identified the RNA binding protein ATAXIN2 (ATXN2) as a putative novel regulator of megakaryopoiesis. ATXN2 expression is high in CD34+/CD41+ megakaryoblasts and sharply decreases upon maturation to megakaryocytes. ATXN2 associates with DDX6 suggesting that it may mediate repression of mRNA translation during early megakaryopoiesis. Comparative transcriptome and proteome analysis on megakaryoid cells (MEG-01) with differential ATXN2 expression identified ATXN2 dependent gene expression of mRNA and protein involved in processes linked to hemostasis. Mice deficient for Atxn2 did not display differences in bleeding times, but the expression of key surface receptors on platelets, such as ITGB3 (carries the CD61 antigen) and CD31 (PECAM1), was deregulated and platelet aggregation upon specific triggers was reduced.


Asunto(s)
Ataxina-2/genética , Perfilación de la Expresión Génica/métodos , Células Progenitoras de Megacariocitos/citología , Animales , Antígenos CD34/genética , Ataxina-2/metabolismo , Diferenciación Celular , Línea Celular , ARN Helicasas DEAD-box/genética , Regulación de la Expresión Génica , Humanos , Ratones , Glicoproteína IIb de Membrana Plaquetaria/genética , Proteínas Proto-Oncogénicas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA