Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Metab ; 83: 101923, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521183

RESUMEN

OBJECTIVES: We have previously shown that lactate is an essential metabolite for macrophage polarisation during ischemia-induced muscle regeneration. Recent in vitro work has implicated histone lactylation, a direct derivative of lactate, in macrophage polarisation. Here, we explore the in vivo relevance of histone lactylation for macrophage polarisation after muscle injury. METHODS: To evaluate macrophage dynamics during muscle regeneration, we subjected mice to ischemia-induced muscle damage by ligating the femoral artery. Muscle samples were harvested at 1, 2, 4, and 7 days post injury (dpi). CD45+CD11b+F4/80+CD64+ macrophages were isolated and processed for RNA sequencing, Western Blotting, and CUT&Tag-sequencing to investigate gene expression, histone lactylation levels, and histone lactylation genomic localisation and enrichment, respectively. RESULTS: We show that, over time, macrophages in the injured muscle undergo extensive gene expression changes, which are similar in nature and in timing to those seen after other types of muscle-injuries. We find that the macrophage histone lactylome is modified between 2 and 4 dpi, which is a crucial window for macrophage polarisation. Absolute histone lactylation levels increase, and, although subtly, the genomic enrichment of H3K18la changes. Overall, we find that histone lactylation is important at both promoter and enhancer elements. Lastly, H3K18la genomic profile changes from 2 to 4 dpi were predictive for gene expression changes later in time, rather than being a reflection of prior gene expression changes. CONCLUSIONS: Our results suggest that histone lactylation dynamics are functionally important for the function of macrophages during muscle regeneration.


Asunto(s)
Histonas , Isquemia , Macrófagos , Ratones Endogámicos C57BL , Músculo Esquelético , Regeneración , Animales , Macrófagos/metabolismo , Ratones , Histonas/metabolismo , Músculo Esquelético/metabolismo , Isquemia/metabolismo , Masculino , Expresión Génica/genética
2.
Commun Biol ; 7(1): 270, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443549

RESUMEN

Embryonic diapause in mammals is a temporary developmental delay occurring at the blastocyst stage. In contrast to other diapausing species displaying a full arrest, the blastocyst of the European roe deer (Capreolus capreolus) proliferates continuously and displays considerable morphological changes in the inner cell mass. We hypothesised that developmental progression also continues during this period. Here we evaluate the mRNA abundance of developmental marker genes in embryos during diapause and elongation. Our results show that morphological rearrangements of the epiblast during diapause correlate with gene expression patterns and changes in cell polarity. Immunohistochemical staining further supports these findings. Primitive endoderm formation occurs during diapause in embryos composed of around 3,000 cells. Gastrulation coincides with elongation and thus takes place after embryo reactivation. The slow developmental progression makes the roe deer an interesting model for unravelling the link between proliferation and differentiation and requirements for embryo survival.


Asunto(s)
Ciervos , Diapausa , Animales , Blastocisto , Diferenciación Celular , Polaridad Celular , Diapausa/genética
3.
Nat Commun ; 15(1): 1391, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360943

RESUMEN

In obesity, sustained adipose tissue (AT) inflammation constitutes a cellular memory that limits the effectiveness of weight loss interventions. Yet, the impact of fasting regimens on the regulation of AT immune infiltration is still elusive. Here we show that intermittent fasting (IF) exacerbates the lipid-associated macrophage (LAM) inflammatory phenotype of visceral AT in obese mice. Importantly, this increase in LAM abundance is strongly p53 dependent and partly mediated by p53-driven adipocyte apoptosis. Adipocyte-specific deletion of p53 prevents LAM accumulation during IF, increases the catabolic state of adipocytes, and enhances systemic metabolic flexibility and insulin sensitivity. Finally, in cohorts of obese/diabetic patients, we describe a p53 polymorphism that links to efficacy of a fasting-mimicking diet and that the expression of p53 and TREM2 in AT negatively correlates with maintaining weight loss after bariatric surgery. Overall, our results demonstrate that p53 signalling in adipocytes dictates LAM accumulation in AT under IF and modulates fasting effectiveness in mice and humans.


Asunto(s)
Resistencia a la Insulina , Ayuno Intermitente , Proteína p53 Supresora de Tumor , Animales , Humanos , Ratones , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Inflamación/metabolismo , Resistencia a la Insulina/genética , Obesidad/genética , Obesidad/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pérdida de Peso
4.
Geroscience ; 46(2): 1789-1806, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37924441

RESUMEN

The establishment of aging clocks highlighted the strong link between changes in DNA methylation and aging. Yet, it is not known if other epigenetic features could be used to predict age accurately. Furthermore, previous studies have observed a lack of effect of age-related changes in DNA methylation on gene expression, putting the interpretability of DNA methylation-based aging clocks into question. In this study, we explore the use of chromatin accessibility to construct aging clocks. We collected blood from 159 human donors and generated chromatin accessibility, transcriptomic, and cell composition data. We investigated how chromatin accessibility changes during aging and constructed a novel aging clock with a median absolute error of 5.27 years. The changes in chromatin accessibility used by the clock were strongly related to transcriptomic alterations, aiding clock interpretation. We additionally show that our chromatin accessibility clock performs significantly better than a transcriptomic clock trained on matched samples. In conclusion, we demonstrate that the clock relies on cell-intrinsic chromatin accessibility alterations rather than changes in cell composition. Further, we present a new approach to construct epigenetic aging clocks based on chromatin accessibility, which bear a direct link to age-related transcriptional alterations, but which allow for more accurate age predictions than transcriptomic clocks.


Asunto(s)
Cromatina , Epigénesis Genética , Humanos , Cromatina/genética , Envejecimiento/genética , Metilación de ADN , Perfilación de la Expresión Génica
5.
Sci Adv ; 9(39): eadg1936, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37774033

RESUMEN

Human pluripotent stem cells (hPSCs) are of fundamental relevance in regenerative medicine. Naïve hPSCs hold promise to overcome some of the limitations of conventional (primed) hPSCs, including recurrent epigenetic anomalies. Naïve-to-primed transition (capacitation) follows transcriptional dynamics of human embryonic epiblast and is necessary for somatic differentiation from naïve hPSCs. We found that capacitated hPSCs are transcriptionally closer to postimplantation epiblast than conventional hPSCs. This prompted us to comprehensively study epigenetic and related transcriptional changes during capacitation. Our results show that CpG islands, gene regulatory elements, and retrotransposons are hotspots of epigenetic dynamics during capacitation and indicate possible distinct roles of specific epigenetic modifications in gene expression control between naïve and primed hPSCs. Unexpectedly, PRC2 activity appeared to be dispensable for the capacitation. We find that capacitated hPSCs acquire an epigenetic state similar to conventional hPSCs. Significantly, however, the X chromosome erosion frequently observed in conventional female hPSCs is reversed by resetting and subsequent capacitation.


Asunto(s)
Células Madre Pluripotentes , Humanos , Femenino , Diferenciación Celular/genética , Embrión de Mamíferos , Epigénesis Genética
6.
Nat Commun ; 14(1): 4250, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460527

RESUMEN

Defects in insulin processing and granule maturation are linked to pancreatic beta-cell failure during type 2 diabetes (T2D). Phosphatidylinositol transfer protein alpha (PITPNA) stimulates activity of phosphatidylinositol (PtdIns) 4-OH kinase to produce sufficient PtdIns-4-phosphate (PtdIns-4-P) in the trans-Golgi network to promote insulin granule maturation. PITPNA in beta-cells of T2D human subjects is markedly reduced suggesting its depletion accompanies beta-cell dysfunction. Conditional deletion of Pitpna in the beta-cells of Ins-Cre, Pitpnaflox/flox mice leads to hyperglycemia resulting from decreasing glucose-stimulated insulin secretion (GSIS) and reducing pancreatic beta-cell mass. Furthermore, PITPNA silencing in human islets confirms its role in PtdIns-4-P synthesis and leads to impaired insulin granule maturation and docking, GSIS, and proinsulin processing with evidence of ER stress. Restoration of PITPNA in islets of T2D human subjects reverses these beta-cell defects and identify PITPNA as a critical target linked to beta-cell failure in T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Animales , Humanos , Ratones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Proinsulina/metabolismo
8.
Genome Biol ; 23(1): 207, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192798

RESUMEN

BACKGROUND: Histone lactylation has been recently described as a novel histone post-translational modification linking cellular metabolism to epigenetic regulation. RESULTS: Given the expected relevance of this modification and current limited knowledge of its function, we generate genome-wide datasets of H3K18la distribution in various in vitro and in vivo samples, including mouse embryonic stem cells, macrophages, adipocytes, and mouse and human skeletal muscle. We compare them to profiles of well-established histone modifications and gene expression patterns. Supervised and unsupervised bioinformatics analysis shows that global H3K18la distribution resembles H3K27ac, although we also find notable differences. H3K18la marks active CpG island-containing promoters of highly expressed genes across most tissues assessed, including many housekeeping genes, and positively correlates with H3K27ac and H3K4me3 as well as with gene expression. In addition, H3K18la is enriched at active enhancers that lie in proximity to genes that are functionally important for the respective tissue. CONCLUSIONS: Overall, our data suggests that H3K18la is not only a marker for active promoters, but also a mark of tissue specific active enhancers.


Asunto(s)
Elementos de Facilitación Genéticos , Histonas , Animales , Epigénesis Genética , Código de Histonas , Histonas/metabolismo , Humanos , Ratones , Regiones Promotoras Genéticas
9.
Stem Cell Reports ; 17(9): 1942-1958, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35931077

RESUMEN

Blastocyst complementation denotes a technique that aims to generate organs, tissues, or cell types in animal chimeras via injection of pluripotent stem cells (PSCs) into genetically compromised blastocyst-stage embryos. Here, we report on successful complementation of the male germline in adult chimeras following injection of mouse or rat PSCs into mouse blastocysts carrying a mutation in Tsc22d3, an essential gene for spermatozoa production. Injection of mouse PSCs into Tsc22d3-Knockout (KO) blastocysts gave rise to intraspecies chimeras exclusively embodying PSC-derived functional spermatozoa. In addition, injection of rat embryonic stem cells (rESCs) into Tsc22d3-KO embryos produced interspecies mouse-rat chimeras solely harboring rat spermatids and spermatozoa capable of fertilizing oocytes. Furthermore, using single-cell RNA sequencing, we deconstructed rat spermatogenesis occurring in a mouse-rat chimera testis. Collectively, this study details a method for exclusive xenogeneic germ cell production in vivo, with implications that may extend to rat transgenesis, or endangered animal species conservation efforts.


Asunto(s)
Células Madre Pluripotentes , Animales , Blastocisto , Quimera , Células Madre Embrionarias , Masculino , Ratones , Ratones Noqueados , Ratas , Espermatozoides
10.
Sci Rep ; 12(1): 13161, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35915220

RESUMEN

Scientific evidence suggests that not only murine scent communication is regulated by major urinary proteins, but that their expression may also vary in response to metabolism via a yet unknown mechanism. Major urinary proteins are expressed mainly in the liver, showing a sexually dimorphic pattern with substantially higher expression in males. Here, we investigate the metabolic implications of a major urinary protein knockout in twelve-week-old male and female C57BL/6N mice during ad libitum feeding. Despite both sexes of major urinary protein knockout mice displayed numerically increased body weight and visceral adipose tissue proportions compared to sex-matched wildtype mice, the main genotype-specific metabolic differences were observed exclusively in males. Male major urinary protein knockout mice exhibited plasma and hepatic lipid accumulation accompanied by a hepatic transcriptome indicating an activation of lipogenesis. These findings match the higher major urinary protein expression in male compared to female wildtype mice, suggesting a more distinct reduction in energy requirements in male compared to female major urinary protein knockout mice. The observed sex-specific anabolic phenotype confirms a role of major urinary protein in metabolism and, since major urinary proteins are not expressed in humans, suggests the major urinary protein knockout mouse as a potential alternative model for translational metabolism research which needs to be further elucidated.


Asunto(s)
Hígado , Proteínas , Animales , Femenino , Humanos , Metabolismo de los Lípidos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Familia de Multigenes , Proteínas/metabolismo
11.
Cell Rep Methods ; 2(3): 100187, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35475220

RESUMEN

A precise understanding of DNA methylation dynamics is of great importance for a variety of biological processes including cellular reprogramming and differentiation. To date, complex integration of multiple and distinct genome-wide datasets is required to realize this task. We present GwEEP (genome-wide epigenetic efficiency profiling) a versatile approach to infer dynamic efficiencies of DNA modifying enzymes. GwEEP relies on genome-wide hairpin datasets, which are translated by a hidden Markov model into quantitative enzyme efficiencies with reported confidence around the estimates. GwEEP predicts de novo and maintenance methylation efficiencies of Dnmts and furthermore the hydroxylation efficiency of Tets. Its design also allows capturing further oxidation processes given available data. We show that GwEEP predicts accurately the epigenetic changes of ESCs following a Serum-to-2i shift and applied to Tet TKO cells confirms the hypothesized mutual interference between Dnmts and Tets.


Asunto(s)
Proteínas de Unión al ADN , Epigénesis Genética , Proteínas de Unión al ADN/genética , Metilación de ADN/genética , ADN/genética , Diferenciación Celular
12.
Nat Commun ; 13(1): 1824, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383160

RESUMEN

The acute stress response mobilizes energy to meet situational demands and re-establish homeostasis. However, the underlying molecular cascades are unclear. Here, we use a brief swim exposure to trigger an acute stress response in mice, which transiently increases anxiety, without leading to lasting maladaptive changes. Using multiomic profiling, such as proteomics, phospho-proteomics, bulk mRNA-, single-nuclei mRNA-, small RNA-, and TRAP-sequencing, we characterize the acute stress-induced molecular events in the mouse hippocampus over time. Our results show the complexity and specificity of the response to acute stress, highlighting both the widespread changes in protein phosphorylation and gene transcription, and tightly regulated protein translation. The observed molecular events resolve efficiently within four hours after initiation of stress. We include an interactive app to explore the data, providing a molecular resource that can help us understand how acute stress impacts brain function in response to stress.


Asunto(s)
Biosíntesis de Proteínas , Estrés Psicológico , Animales , Ansiedad/genética , Hipocampo/metabolismo , Ratones , ARN Mensajero/metabolismo
13.
Sci Adv ; 8(14): eabj4928, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35385316

RESUMEN

Transient MyoD overexpression in concert with small molecule treatment reprograms mouse fibroblasts into induced myogenic progenitor cells (iMPCs). However, the molecular landscape and mechanisms orchestrating this cellular conversion remain unknown. Here, we undertook an integrative multiomics approach to delineate the process of iMPC reprogramming in comparison to myogenic transdifferentiation mediated solely by MyoD. Using transcriptomics, proteomics, and genome-wide chromatin accessibility assays, we unravel distinct molecular trajectories that govern the two processes. Notably, only iMPC reprogramming is characterized by gradual up-regulation of muscle stem cell markers, unique signaling pathways, and chromatin remodelers in conjunction with exclusive chromatin opening in core myogenic promoters. In addition, we determine that the Notch pathway is indispensable for iMPC formation and self-renewal and further use the Notch ligand Dll1 to homogeneously propagate iMPCs. Collectively, this study charts divergent molecular blueprints for myogenic transdifferentiation or reprogramming and underpins the heightened capacity of iMPCs for capturing myogenesis ex vivo.

14.
Methods Mol Biol ; 2416: 157-180, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34870836

RESUMEN

DNA methylation represents one of the best characterized epigenetic modifications. In particular, global demethylation is a common feature of epigenetic reprogramming to naïve pluripotency in human and mouse pluripotent stem cells. In parallel to the global changes, several locus-specific changes to the DNA methylation landscape occur and also loss of imprinting has been observed in naïve human pluripotent stem cells. The current gold standard to assess and quantitively map DNA methylation is bisulfite sequencing. Various protocols are available for genome-wide bisulfite sequencing and here I describe an optimized method based on Post Bisulfite Adapter Tagging (PBAT) for low amounts of DNA or cells, with as little as 50 cells as minimum requirement, and with the possibility to process a large number of samples in parallel. I outline the basic bioinformatic steps needed to process raw Illumina sequencing data and then describe the inital steps of the analysis of DNA methylation datasets, including an assessment of imprint control regions.


Asunto(s)
Metilación de ADN , Células Madre Pluripotentes , Epigénesis Genética , Epigenómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de Secuencia de ADN , Sulfitos
15.
Genome Res ; 31(8): 1381-1394, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34244229

RESUMEN

Hydroxycarbamide (HC, hydroxyurea) is a cytoreductive drug inducing cell cycle blockade. However, emerging evidence suggests that HC plays a role in the modulation of transcription through the activity of transcription factors and DNA methylation. Examining the global mechanism of action of HC in the context of myeloproliferative neoplasms (MPNs), for which HC is the first-line treatment, will provide a better understanding of its molecular effects. To explore the effects of HC genome-wide, transcriptomic analyses were performed on two clinically relevant cell types at different stages of differentiation treated with HC in a murine MPN model. This study was replicated in MPN patients by profiling genome-wide gene expression and DNA methylation using patient blood samples collected longitudinally, before and following HC exposure. The effects of HC on the transcriptome were not only associated with cell cycle interruption but also with hematopoietic functions. Moreover, a group of genes were restored to normal expression levels in murine hematopoietic stem cells (HSCs) following drug treatment, including the master regulator of hematopoiesis, RUNX1 In humans, HC significantly modifies DNA methylation levels in HSCs at several distal regulatory regions, which we show to be associated with SPI1 binding sites and at the SPI1 locus itself. We have identified novel targets of HC that include pivotal transcription factors involved in hematopoiesis, and for the first time we report abnormal methylation patterns in MPN patients at the master regulator gene SPI1 and its distal binding sites, which HC is able to restore to normal levels.


Asunto(s)
Metilación de ADN , Neoplasias , Animales , Hematopoyesis/genética , Humanos , Hidroxiurea/farmacología , Ratones , Neoplasias/genética , Transcriptoma
16.
Nat Struct Mol Biol ; 28(7): 594-603, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34140676

RESUMEN

DNA methylation plays a critical role during development, particularly in repressing retrotransposons. The mammalian methylation landscape is dependent on the combined activities of the canonical maintenance enzyme Dnmt1 and the de novo Dnmts, 3a and 3b. Here, we demonstrate that Dnmt1 displays de novo methylation activity in vitro and in vivo with specific retrotransposon targeting. We used whole-genome bisulfite and long-read Nanopore sequencing in genetically engineered methylation-depleted mouse embryonic stem cells to provide an in-depth assessment and quantification of this activity. Utilizing additional knockout lines and molecular characterization, we show that the de novo methylation activity of Dnmt1 depends on Uhrf1, and its genomic recruitment overlaps with regions that enrich for Uhrf1, Trim28 and H3K9 trimethylation. Our data demonstrate that Dnmt1 can catalyze DNA methylation in both a de novo and maintenance context, especially at retrotransposons, where this mechanism may provide additional stability for long-term repression and epigenetic propagation throughout development.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Metilación de ADN/genética , Elementos Transponibles de ADN/genética , Desarrollo Embrionario/genética , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Células Cultivadas , Cromatina/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Técnicas de Inactivación de Genes , Genoma/genética , Histonas/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Secuenciación Completa del Genoma , ADN Metiltransferasa 3B
17.
Metabolism ; 116: 154466, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33333081

RESUMEN

OBJECTIVE: Adipose tissue-derived stem cells (ASCs) might play an important role in adipose microenvironment remodelling during tissue expansion through their response to hypoxia. We examined the cytokine profiles of hypoxic visceral ASCs (hypox-visASCs) from subjects with different metabolic risk, the interactions between cytokines as well as the impact of TNFα-induced death in the behavior of surviving hypoxic subcutaneous ASCs (hypox-subASCs) both at bulk population and single-cell level. MATERIALS/METHODS: Visceral adipose tissue was processed to isolate the ASCs from 33 subjects grouped into normal weight, obese with and without metabolic syndrome. Multiplex assay was used to simultaneously measure multiple inflammatory, anti-inflammatory and angiogenic cytokines in hypox-visASCs from these patients and to elucidate cytokine profiles of hypox-subASCs upon stimulation with IL1ß or TNFα and after TNFα-induced death. qPCR and single-cell RNA-sequencing were also performed to elucidate transcriptional impact in surviving hypox-subASCs after TNFα-induced apoptosis. RESULTS: Hypox-visASCs from subjects without metabolic syndrome showed greater secretion levels of inflammatory, anti-inflammatory and angiogenic cytokines compared with those from patients with metabolic syndrome. While IL-1ß stimulation was sufficient to increase the secretion levels of these cytokines in hypox-subASCs, TNFα-induced apoptosis also increased their levels and impacted on the expression levels of extracellular matrix proteins, acetyl-CoA producing enzymes and redox-balance proteins in surviving hypox-subASCs. TNFα-induced apoptosis under different glucose concentrations caused selective impoverishment of cell clusters and differentially influenced gene expression profiles of surviving hypox-subASCs. CONCLUSIONS: Immunoregulatory and angiogenic functions of hypox-visASCs from patients with metabolic syndrome could be insufficient to promote healthy adipose tissue expansion. TNFα-induced apoptosis may impact on functionality of hypox-subASC populations, whose differential metabolic sensitivity to death could serve to manipulate individual populations selectively in order to elucidate their role in shaping adipose heterogeneity and treating metabolic disorders.


Asunto(s)
Tejido Adiposo/patología , Células Madre Adultas/metabolismo , Apoptosis/efectos de los fármacos , Citocinas/metabolismo , Síndrome Metabólico/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Tejido Adiposo/metabolismo , Células Madre Adultas/efectos de los fármacos , Células Madre Adultas/fisiología , Anciano , Apoptosis/genética , Hipoxia de la Célula/fisiología , Células Cultivadas , Femenino , Humanos , Masculino , Síndrome Metabólico/etiología , Síndrome Metabólico/patología , Persona de Mediana Edad , Comunicación Paracrina/efectos de los fármacos , Comunicación Paracrina/genética , Comunicación Paracrina/fisiología , RNA-Seq , Factores de Riesgo , Análisis de la Célula Individual/métodos
18.
Cardiovasc Res ; 117(4): 1060-1069, 2021 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-32402085

RESUMEN

AIMS: Fibroblast activation protein (FAP) is upregulated at sites of tissue remodelling including chronic arthritis, solid tumours, and fibrotic hearts. It has also been associated with human coronary atherosclerotic plaques. Yet, the causal role of FAP in atherosclerosis remains unknown. To investigate the cause-effect relationship of endogenous FAP in atherogenesis, we assessed the effects of constitutive Fap deletion on plaque formation in atherosclerosis-prone apolipoprotein E (Apoe) or low-density lipoprotein receptor (Ldlr) knockout mice. METHODS AND RESULTS: Using en face analyses of thoraco-abdominal aortae and aortic sinus cross-sections, we demonstrate that Fap deficiency decreased plaque formation in two atherosclerotic mouse models (-46% in Apoe and -34% in Ldlr knockout mice). As a surrogate of plaque vulnerability fibrous cap thickness was used; it was increased in Fap-deficient mice, whereas Sirius red staining demonstrated that total collagen content remained unchanged. Using polarized light, atherosclerotic lesions from Fap-deficient mice displayed increased FAP targets in terms of enhanced collagen birefringence in plaques and increased pre-COL3A1 expression in aortic lysates. Analyses of the Stockholm Atherosclerosis Gene Expression data revealed that FAP expression was increased in human atherosclerotic compared to non-atherosclerotic arteries. CONCLUSIONS: Our data provide causal evidence that constitutive Fap deletion decreases progression of experimental atherosclerosis and increases features of plaque stability with decreased collagen breakdown. Thus, inhibition of FAP expression or activity may not only represent a promising therapeutic target in atherosclerosis but appears safe at the experimental level for FAP-targeted cancer therapies.


Asunto(s)
Aorta/enzimología , Enfermedades de la Aorta/prevención & control , Aterosclerosis/prevención & control , Endopeptidasas/deficiencia , Proteínas de la Membrana/deficiencia , Remodelación Vascular , Animales , Aorta/patología , Enfermedades de la Aorta/enzimología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Aterosclerosis/enzimología , Aterosclerosis/genética , Aterosclerosis/patología , Estudios de Casos y Controles , Colágeno/genética , Colágeno/metabolismo , Modelos Animales de Enfermedad , Endopeptidasas/genética , Fibrosis , Eliminación de Gen , Humanos , Lípidos/sangre , Masculino , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Músculo Liso Vascular/enzimología , Músculo Liso Vascular/patología , Placa Aterosclerótica , Proteoma , Receptores de LDL/deficiencia , Receptores de LDL/genética , Transcriptoma
19.
Skelet Muscle ; 10(1): 21, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32646489

RESUMEN

BACKGROUND: Satellite cells (SCs) are required for muscle repair following injury and are involved in muscle remodeling upon muscular contractions. Exercise stimulates SC accumulation and myonuclear accretion. To what extent exercise training at different mechanical loads drive SC contribution to myonuclei however is unknown. RESULTS: By performing SC fate tracing experiments, we show that 8 weeks of voluntary wheel running increased SC contribution to myofibers in mouse plantar flexor muscles in a load-dependent, but fiber type-independent manner. Increased SC fusion however was not exclusively linked to muscle hypertrophy as wheel running without external load substantially increased SC fusion in the absence of fiber hypertrophy. Due to nuclear propagation, nuclear fluorescent fate tracing mouse models were inadequate to quantify SC contribution to myonuclei. Ultimately, by performing fate tracing at the DNA level, we show that SC contribution mirrors myonuclear accretion during exercise. CONCLUSIONS: Collectively, mechanical load during exercise independently promotes SC contribution to existing myofibers. Also, due to propagation of nuclear fluorescent reporter proteins, our data warrant caution for the use of existing reporter mouse models for the quantitative evaluation of satellite cell contribution to myonuclei.


Asunto(s)
Fusión Celular , Fibras Musculares Esqueléticas/citología , Carrera , Células Satélite del Músculo Esquelético/citología , Animales , Núcleo Celular/fisiología , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/fisiología , Células Satélite del Músculo Esquelético/fisiología
20.
Nucleic Acids Res ; 48(16): e92, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32621604

RESUMEN

Genomic imprinting is an epigenetic phenomenon leading to parental allele-specific expression. Dosage of imprinted genes is crucial for normal development and its dysregulation accounts for several human disorders. This unusual expression pattern is mostly dictated by differences in DNA methylation between parental alleles at specific regulatory elements known as imprinting control regions (ICRs). Although several approaches can be used for methylation inspection, we lack an easy and cost-effective method to simultaneously measure DNA methylation at multiple imprinted regions. Here, we present IMPLICON, a high-throughput method measuring DNA methylation levels at imprinted regions with base-pair resolution and over 1000-fold coverage. We adapted amplicon bisulfite-sequencing protocols to design IMPLICON for ICRs in adult tissues of inbred mice, validating it in hybrid mice from reciprocal crosses for which we could discriminate methylation profiles in the two parental alleles. Lastly, we developed a human version of IMPLICON and detected imprinting errors in embryonic and induced pluripotent stem cells. We also provide rules and guidelines to adapt this method for investigating the DNA methylation landscape of any set of genomic regions. In summary, IMPLICON is a rapid, cost-effective and scalable method, which could become the gold standard in both imprinting research and diagnostics.


Asunto(s)
Islas de CpG , Metilación de ADN , Impresión Genómica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Animales , Células Cultivadas , Femenino , Fibroblastos , Células Madre Embrionarias Humanas , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA