Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(23): e2407437121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38814864

RESUMEN

The accessory protease transmembrane protease serine 2 (TMPRSS2) enhances severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uptake into ACE2-expressing cells, although how increased entry impacts downstream viral and host processes remains unclear. To investigate this in more detail, we performed infection assays in engineered cells promoting ACE2-mediated entry with and without TMPRSS2 coexpression. Electron microscopy and inhibitor experiments indicated TMPRSS2-mediated cell entry was associated with increased virion internalization into endosomes, and partially dependent upon clathrin-mediated endocytosis. TMPRSS2 increased panvariant uptake efficiency and enhanced early rates of virus replication, transcription, and secretion, with variant-specific profiles observed. On the host side, transcriptional profiling confirmed the magnitude of infection-induced antiviral and proinflammatory responses were linked to uptake efficiency, with TMPRSS2-assisted entry boosting early antiviral responses. In addition, TMPRSS2-enhanced infections increased rates of cytopathology, apoptosis, and necrosis and modulated virus secretion kinetics in a variant-specific manner. On the virus side, convergent signatures of cell-uptake-dependent innate immune induction were recorded in viral genomes, manifesting as switches in dominant coupled Nsp3 residues whose frequencies were correlated to the magnitude of the cellular response to infection. Experimentally, we demonstrated that selected Nsp3 mutations conferred enhanced interferon antagonism. More broadly, we show that TMPRSS2 orthologues from evolutionarily diverse mammals facilitate panvariant enhancement of cell uptake. In summary, our study uncovers previously unreported associations, linking cell entry efficiency to innate immune activation kinetics, cell death rates, virus secretion dynamics, and convergent selection of viral mutations. These data expand our understanding of TMPRSS2's role in the SARS-CoV-2 life cycle and confirm its broader significance in zoonotic reservoirs and animal models.


Asunto(s)
COVID-19 , Inmunidad Innata , SARS-CoV-2 , Serina Endopeptidasas , Internalización del Virus , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , SARS-CoV-2/metabolismo , Humanos , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/genética , COVID-19/virología , COVID-19/inmunología , COVID-19/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Replicación Viral , Animales , Endocitosis , Células HEK293 , Chlorocebus aethiops , Citología
2.
Vaccines (Basel) ; 10(5)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35632550

RESUMEN

The SARS-CoV-2 variant Omicron has spread world-wide and is responsible for rapid increases in infections, including in populations with high vaccination rates. Here, we analysed in the sera of vaccinated individuals the antibody binding to the receptor-binding domain (RBD) of the spike protein and the neutralization of wild-type (WT), Delta (B.1.617.2), and Omicron (B.1.1.529; BA.1) pseudotyped vectors. Although sera from individuals immunized with vector vaccines (Vaxzevria; AZ and COVID-19 Janssen, Ad26.COV2.S; J&J) were able to bind and neutralize WT and Delta, they showed only background levels towards Omicron. In contrast, mRNA (Comirnaty; BNT) or heterologous (AZ/BNT) vaccines induced weak, but detectable responses against Omicron. While RBD-binding antibody levels decreased significantly six months after full vaccination, the SARS-CoV-2 RBD-directed avidity remained constant. However, this still coincided with a significant decrease in neutralization activity against all variants. A third booster vaccination with BNT significantly increased the humoral immune responses against all tested variants, including Omicron. In conclusion, only vaccination schedules that included at least one dose of mRNA vaccine and especially an mRNA booster vaccination induced sufficient antibody levels with neutralization capacity against multiple variants, including Omicron.

3.
Viruses ; 14(5)2022 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-35632624

RESUMEN

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic has now been continuing for more than two years. The infection causes COVID-19, a disease of the respiratory and cardiovascular system of variable severity. Here, the humoral immune response of 80 COVID-19 patients from the University Hospital Frankfurt/Main, Germany, was characterized longitudinally. The SARS-CoV-2 neutralization activity of serum waned over time. The neutralizing potential of serum directed towards the human alpha-coronavirus NL-63 (NL63) also waned, indicating that no cross-priming against alpha-coronaviruses occurred. A subset of the recovered patients (n = 13) was additionally vaccinated with the mRNA vaccine Comirnaty. Vaccination increased neutralization activity against SARS-CoV-2 wild-type (WT), Delta, and Omicron, although Omicron-specific neutralization was not detectable prior to vaccination. In addition, the vaccination induced neutralizing antibodies against the more distantly related SARS-CoV-1 but not against NL63. The results indicate that although SARS-CoV-2 humoral immune responses induced by infection wane, vaccination induces a broad neutralizing activity against multiple SARS-CoVs, but not to the common cold alpha-coronavirus NL63.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Inmunidad Humoral , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Humanos , Estudios Longitudinales , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas Sintéticas/inmunología , Vacunas de ARNm/inmunología
4.
J Gen Virol ; 102(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33830908

RESUMEN

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection has caused a pandemic with tens of millions of cases and more than a million deaths. The infection causes COVID-19, a disease of the respiratory system of divergent severity. No treatment exists. Epigallocatechin-3-gallate (EGCG), the major component of green tea, has several beneficial properties, including antiviral activities. Therefore, we examined whether EGCG has antiviral activity against SARS-CoV-2. EGCG blocked not only the entry of SARS-CoV-2, but also MERS- and SARS-CoV pseudotyped lentiviral vectors and inhibited virus infections in vitro. Mechanistically, inhibition of the SARS-CoV-2 spike-receptor interaction was observed. Thus, EGCG might be suitable for use as a lead structure to develop more effective anti-COVID-19 drugs.


Asunto(s)
Antivirales/farmacología , Catequina/análogos & derivados , SARS-CoV-2/efectos de los fármacos , Té/química , Animales , Betacoronavirus/efectos de los fármacos , Betacoronavirus/fisiología , COVID-19/prevención & control , COVID-19/virología , Catequina/farmacología , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Células HEK293 , Humanos , Lentivirus/efectos de los fármacos , Lentivirus/genética , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/genética , Células Vero , Acoplamiento Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos
5.
J Virol Methods ; 288: 114031, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33275926

RESUMEN

Convalescent plasma is plasma collected from individuals after resolution of an infection and the development of antibodies. Passive antibody administration by transfusion of convalescent plasma is currently in clinical evaluations to treat COVID-19 patients. The level of neutralizing antibodies vary among convalescent patients and fast and simple methods to identify suitable plasma donations are needed. We compared three methods to determine the SARS-CoV-2 neutralizing activity of human convalescent plasma: life virus neutralization by plaque reduction assay, a lentiviral vector based pseudotype neutralization assay and a competition ELISA-based surrogate virus neutralization assay (sVNT). Neutralization activity correlated among the different assays; however the sVNT assay was overvaluing the low neutralizing plasma. On the other hand, the sVNT assay required the lowest biosafety level, is fast and is sufficient to identify highly neutralizing plasma samples. Though weakly neutralizing samples were more reliable detected by the more challenging lentiviral vector based assays or virus neutralization assays. Spike receptor binding competition assays are suitable to identify highly neutralizing plasma samples under low biosafety requirements. Detailed analysis of in vitro neutralization activity requires more sophisticated methods that have to be performed under higher biosafety levels.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Prueba Serológica para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/inmunología , Pruebas de Neutralización/métodos , SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/sangre , Prueba Serológica para COVID-19/normas , Línea Celular , Humanos
6.
J Infect Dis ; 223(1): 56-61, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33128369

RESUMEN

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has caused a pandemic with tens of millions of cases and hundreds of thousands of deaths. The infection causes coronavirus disease 2019 (COVID-19), a disease of the respiratory system of divergent severity. In the current study, humoral immune responses were characterized in a cohort of 143 patients with COVID-19 from the University Hospital Frankfurt am Main, Germany. METHODS: SARS-CoV-2-specific-antibodies were detected by enzyme-linked immunosorbent assay (ELISA). SARS-CoV-2 and human coronavirus NL63 neutralization activity was analyzed with pseudotyped lentiviral vectors. RESULTS: The severity of COVID-19 increased with age, and male patients encountered more serious symptoms than female patients. Disease severity was correlated with the amount of SARS-CoV-2-specific immunoglobulin (Ig) G and IgA and the neutralization activity of the antibodies. The amount of SARS-CoV-2-specific IgG antibodies decreased with time after polymerase chain reaction conformation of the infection, and antibodies directed against the nucleoprotein waned faster than spike protein-directed antibodies. In contrast, for the common flu coronavirus NL63, COVID-19 disease severity seemed to be correlated with low NL63-neutralizing activities, suggesting the possibility of cross-reactive protection. CONCLUSION: The results describe the humoral immune responses against SARS-CoV-2 and might aid the identification of correlates of protection needed for vaccine development.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Inmunidad Humoral , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Neutralizantes/inmunología , Estudios de Cohortes , Reacciones Cruzadas , Ensayo de Inmunoadsorción Enzimática , Femenino , Alemania , Células HEK293 , Humanos , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Adulto Joven
7.
J Infect Dis ; 221(10): 1713-1723, 2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-31828322

RESUMEN

BACKGROUND: Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes severe flu-like symptoms. The acute symptoms disappear after 1 week, but chronic arthralgia can persist for years. In this study, humoral immune responses in CHIKV-infected patients and vaccinees were analyzed. METHODS: Alphavirus neutralization activity was analyzed with pseudotyped lentiviral vectors, and antibody epitope mapping was performed with a peptide array. RESULTS: The greatest CHIKV neutralization activity was observed 60-92 days after onset of symptoms. The amount of CHIKV-specific antibodies and their binding avidity and cross-reactivity with other alphaviruses increased over time. Chikungunya virus and o'nyong-nyong virus (ONNV) were both neutralized to a similar extent. Linear antibody binding epitopes were mainly found in E2 domain B and the acid-sensitive regions (ASRs). In addition, serum samples from healthy volunteers vaccinated with a measles-vectored chikungunya vaccine candidate, MV-CHIK, were analyzed. Neutralization activity in the samples from the vaccine cohort was 2- to 6-fold lower than in samples from CHIKV-infected patients. In contrast to infection, vaccination only induced cross-neutralization with ONNV, and the E2 ASR1 was the major antibody target. CONCLUSIONS: These data could assist vaccine design and enable the identification of correlates of protection necessary for vaccine efficacy.


Asunto(s)
Anticuerpos Antivirales/sangre , Fiebre Chikungunya/prevención & control , Virus Chikungunya/inmunología , Inmunidad Humoral , Vacunas Virales/inmunología , Adulto , Especificidad de Anticuerpos , Fiebre Chikungunya/sangre , Mapeo Epitopo , Regulación Viral de la Expresión Génica , Células HEK293 , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Conformación Proteica , Proteoma , Vacunación
8.
J Virol ; 93(22)2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31462561

RESUMEN

Attenuated poxviruses like modified vaccinia virus Ankara (MVA) are promising vectors for vaccines against infectious diseases and cancer. However, host innate immune responses interfere with the viral life cycle and also influence the immunogenicity of vaccine vectors. Sterile alpha motif (SAM) domain and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) is a phosphohydrolase and reduces cellular deoxynucleoside triphosphate (dNTP) concentrations, which impairs poxviral DNA replication in human dendritic cells (DCs). Human immunodeficiency virus type 2 (HIV-2) and simian immunodeficiency virus (SIV) encode an accessory protein called viral protein X (Vpx) that promotes proteasomal degradation of SAMHD1, leading to a rapid increase in cellular dNTP concentrations. To study the function of SAMHD1 during MVA infection of human DCs, the SIV vpx gene was introduced into the MVA genome (resulting in recombinant MVA-vpx). Infection of human DCs with MVA-vpx led to SAMHD1 protein degradation and enabled MVA-vpx to replicate its DNA genome and to express genes controlled by late promoters. Late gene expression by MVA-vpx might improve its vaccine vector properties; however, type I interferon expression was unexpectedly blocked by Vpx-expressing MVA. MVA-vpx can be used as a tool to study poxvirus-host interactions and vector safety.IMPORTANCE SAMHD1 is a phosphohydrolase and reduces cellular dNTP concentrations, which impairs poxviral DNA replication. The simian SIV accessory protein Vpx promotes degradation of SAMHD1, leading to increased cellular dNTP concentrations. Vpx addition enables poxviral DNA replication in human dendritic cells (DCs), as well as the expression of viral late proteins, which is normally blocked. SAMHD1 function during modified vaccinia virus Ankara (MVA) infection of human DCs was studied with recombinant MVA-vpx expressing Vpx. Infection of human DCs with MVA-vpx decreased SAMHD1 protein amounts, enabling MVA DNA replication and expression of late viral genes. Unexpectedly, type I interferon expression was blocked after MVA-vpx infection. MVA-vpx might be a good tool to study SAMHD1 depletion during poxviral infections and to provide insights into poxvirus-host interactions.


Asunto(s)
Células Dendríticas/metabolismo , Células Dendríticas/virología , Interferón Tipo I/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Virus Vaccinia/genética , Células A549 , Animales , Línea Celular , Regulación Viral de la Expresión Génica , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Interferón Tipo I/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteolisis , Proteína 1 que Contiene Dominios SAM y HD/genética , Virus de la Inmunodeficiencia de los Simios/fisiología , Virus Vaccinia/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Replicación Viral/fisiología
9.
PLoS Negl Trop Dis ; 11(1): e0005318, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28114368

RESUMEN

BACKGROUND: Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes high fever, rash, and recurrent arthritis in humans. It has efficiently adapted to Aedes albopictus, which also inhabits temperate regions, including Europe and the United States of America. In the past, CHIKV has mainly affected developing countries, but has recently caused large outbreaks in the Caribbean and Latin America. No treatment or licensed CHIKV vaccine exists. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have identified determinants in the CHIKV cell-attachment protein E2 that facilitate cell binding. The extracellular part of the E2 gene is subdivided into the three domains, A, B, and C. These domains were expressed in E. coli and as Fc-fusion proteins generated from HEK293T cells and used for cell-binding assays. Domains A and B bound to all cells tested, independently of their permissiveness to CHIKV infection. Domain C did not bind to cells at all. Furthermore, CHIKV cell entry was promoted by cell-surface glycosaminoglycans (GAGs) and domain B interacted exclusively with GAG-expressing cells. Domain A also bound, although only moderately, to GAG-deficient cells. Soluble GAGs were able to inhibit CHIKV infection up to 90%; however, they enhanced the transduction rate of CHIKV Env pseudotyped vectors in GAG-negative cells. CONCLUSION/SIGNIFICANCE: These data imply that CHIKV uses at least two mechanisms to enter cells, one GAG-dependent, via initial attachment through domain B, and the other GAG-independent, via attachment of domain A. These data give indications that CHIKV uses multiple mechanisms to enter cells and shows the potential of GAGs as lead structures for developing antiviral drugs.


Asunto(s)
Fiebre Chikungunya/virología , Virus Chikungunya/metabolismo , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Aedes/virología , Secuencias de Aminoácidos , Animales , Región del Caribe , Fiebre Chikungunya/metabolismo , Virus Chikungunya/química , Virus Chikungunya/genética , Glicosaminoglicanos/metabolismo , Humanos , Dominios Proteicos , Proteínas del Envoltorio Viral/genética , Internalización del Virus , Replicación Viral
10.
Antiviral Res ; 125: 51-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26611396

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes chikungunya fever and has infected millions of people mainly in developing countries. The associated disease is characterized by rash, high fever, and severe arthritis that can persist for years. CHIKV has adapted to Aedes albopictus, which also inhabits temperate regions including Europe and the United States of America. CHIKV has recently caused large outbreaks in Latin America. No treatment or licensed CHIKV vaccine exists. Traditional medicines are known to have anti-viral effects; therefore, we examined whether curcumin or Boswellia serrata gum resin extract have antiviral activity against CHIKV. Both compounds blocked entry of CHIKV Env-pseudotyped lentiviral vectors and inhibited CHIKV infection in vitro. In addition, vesicular stomatitis virus vector particles and viral infections were also inhibited to the same extent, indicating a broad antiviral activity. Although the bioavailability of these compounds is rather poor, they might be used as a lead structure to develop more effective antiviral drugs or might be used topically to prevent CHIKV spread in the skin after mosquito bites.


Asunto(s)
Boswellia/química , Fiebre Chikungunya/tratamiento farmacológico , Virus Chikungunya/efectos de los fármacos , Curcumina/farmacología , Triterpenos/farmacología , Estomatitis Vesicular/tratamiento farmacológico , Virus de la Estomatitis Vesicular Indiana/efectos de los fármacos , Animales , Antivirales/farmacología , Vectores Genéticos/efectos de los fármacos , Células HEK293 , Humanos , Lentivirus/genética
11.
Antiviral Res ; 113: 1-3, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25446334

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes chikungunya fever and has infected millions of people mainly in developing countries. The associated disease is characterized by rash, high fever and severe arthritis that can persist for years. CHIKV has adapted to Aedes albopictus, which also inhabits temperate regions, including Europe and the United States of America and might cause new, large outbreaks there. No treatment or licensed CHIKV vaccine exists. Epigallocatechin-3-gallate (EGCG), the major component of green tea, has, among other beneficial properties, antiviral activities. Therefore, we examined if EGCG has antiviral activity against CHIKV. EGCG inhibited CHIKV infection in vitro, blocked entry of CHIKV Env-pseudotyped lentiviral vectors and inhibited CHIKV attachment to target cells. Thus EGCG might be used as a lead structure to develop more effective antiviral drugs.


Asunto(s)
Antivirales/farmacología , Catequina/análogos & derivados , Virus Chikungunya/efectos de los fármacos , Té/química , Catequina/farmacología , Virus Chikungunya/fisiología , Vectores Genéticos , Células HEK293 , Humanos , Acoplamiento Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos
12.
J Bacteriol ; 192(15): 4001-11, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20511497

RESUMEN

Cytolysin A (known as ClyA, HlyE, and SheA) is a cytolytic pore-forming protein toxin found in several Escherichia coli and Salmonella enterica strains. The structure of its water-soluble monomeric form and that of dodecameric ClyA pores is known, but the mechanisms of ClyA export from bacterial cells and of pore assembly are only partially understood. Here we used site-directed mutagenesis to study the importance of different regions of the E. coli ClyA protein for export and activity. The data indicate that ClyA translocation to the periplasm requires several protein segments located closely adjacent to each other in the "tail" domain of the ClyA monomer, namely, the N- and C-terminal regions and the hydrophobic sequence ranging from residues 89 to 101. Deletion of most of the "head" domain of the monomer (residues 181 to 203), on the other hand, did not strongly affect ClyA secretion, suggesting that the tail domain plays a particular role in export. Furthermore, we found that the N-terminal amphipathic helix alphaA1 of ClyA is crucial for the formation and the properties of the transmembrane channel, and hence for hemolytic activity. Several mutations affecting the C-terminal helix alphaG, the "beta-tongue" region in the head domain, or the hydrophobic region in the tail domain of the ClyA monomer strongly impaired the hemolytic activity and reduced the activity toward planar lipid bilayer membranes but did not totally prevent formation of wild-type-like channels in these artificial membranes. The latter regions thus apparently promote membrane interaction without being directly required for pore formation in a lipid bilayer.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Hemolisinas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas Hemolisinas/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica , Transporte de Proteínas
13.
Int J Med Microbiol ; 299(1): 21-35, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18715828

RESUMEN

Functional homologs of the Escherichia coli cytolysin A (clyA, hlyE, sheA) gene have recently been detected in Salmonella enterica serovars Typhi (S. Typhi) and Paratyphi A (S. Paratyphi A). In this study, analysis of a collection of Salmonella strains showed that all S. Typhi and S. Paratyphi A strains tested harbor an intact copy of the corresponding clyA variant, i.e. clyA(STy) and clyA(SPaA), respectively. On the other hand, clyA proved to be absent in the S. enterica serovar Paratyphi B and serovar Paratyphi C strains, in various non-typhoid S. enterica subsp. enterica serovars (Typhimurium, Enteritidis, Choleraesuis, Dublin, and Gallinarum), and in S. enterica subsp. arizonae and Salmonella bongori strains. When grown under normal laboratory conditions, the S. Typhi and S. Paratyphi A strains produced only basal amounts of ClyA protein and did not exhibit a clyA-dependent hemolytic phenotype. RT-PCR and immunoblot analyses as well as phenotypic data revealed, however, that the expression of clyA(STy) and clyA(SPaA) can be activated by the Salmonella transcription factor SlyA. In addition, osmotic protection assays and lipid bilayer experiments demonstrated that the hemolytic ClyA(STy) and ClyA(SPaA) proteins are effective pore-forming toxins which, similar to E. coli ClyA, generate large, stable, moderately cation-selective channels in target membranes. Taken together with our recent serological findings which have indicated that S. Typhi and S. Paratyphi A strains produce substantial amounts of ClyA during human infection, these data suggest that ClyA may play a role in S. Typhi and S. Paratyphi A pathogenesis.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/metabolismo , Perforina/biosíntesis , Perforina/metabolismo , Salmonella enterica/patogenicidad , Factores de Virulencia/biosíntesis , Factores de Virulencia/metabolismo , Proteínas Bacterianas/genética , Membrana Celular/efectos de los fármacos , ADN Bacteriano/química , ADN Bacteriano/genética , Perfilación de la Expresión Génica , Orden Génico , Humanos , Immunoblotting , Datos de Secuencia Molecular , Perforina/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Salmonella enterica/genética , Análisis de Secuencia de ADN , Factores de Virulencia/genética
14.
FEMS Microbiol Lett ; 287(2): 143-8, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18754791

RESUMEN

Cytolysin A (ClyA, HlyE, SheA) is a hemolytic pore-forming toxin found in Escherichia coli and Salmonella enterica serovars Typhi and Paratyphi A. In the present study, analysis of several Shigella strains revealed that they harbor only nonfunctional clyA gene copies that have been inactivated either by the integration of insertion sequence (IS) elements (Shigella dysenteriae, Shigella boydii, and Shigella sonnei strains) or by a frameshift mutation (Shigella flexneri). Shigella dysenteriae and S. boydii strains also exhibited IS-associated deletions at the clyA locus. PCR and Southern blot analyses as well as database searches indicated that clyA-related DNA sequences are completely absent in strains belonging to various other genera of the family Enterobacteriaceae. According to these data, ClyA may play a role only for a rather small subset of the enteric bacteria.


Asunto(s)
Proteínas Bacterianas/genética , Citotoxinas/genética , Shigella/genética , Proteínas Bacterianas/metabolismo , Citotoxinas/metabolismo , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Datos de Secuencia Molecular , Mutación , Shigella/metabolismo
15.
Int J Med Microbiol ; 298(5-6): 473-81, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17897882

RESUMEN

Introduction of the Borrelia burgdorferi blyAB locus into Escherichia coli has recently been reported to cause a hemolytic phenotype that is dependent on the E. coli clyA (hlyE, sheA) gene (a cytolysin gene present in many E. coli strains, including E. coli K-12, which is repressed under standard in vitro growth conditions). The blyA gene product has been suggested to be a prophage-encoded holin, but the processes triggered in E. coli by the expression of blyA and/or blyB, which lead to the hemolytic phenotype, remained unclear. Here we show that expression of blyA in E. coli causes damage to the E. coli cell envelope and a clyA-dependent hemolytic phenotype, regardless whether blyB is present or absent. The expression of blyB in E. coli, on the other hand, did not have obvious phenotypic effects. Transcriptional studies demonstrated that the clyA gene is not induced in E. coli cells expressing blyA. Furthermore, protein analyses suggested that the impairment of the E. coli cell envelope by BlyA is responsible for the emergence of the hemolytic activity as it allows latent intracellular ClyA protein, derived from basal-level expression of the clyA gene, to leak into the medium and to lyse erythrocytes. These findings are compatible with the presumption that BlyA functions as a membrane-active holin.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteriófagos/genética , Borrelia burgdorferi/virología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Virales/metabolismo , Proteínas Bacterianas/genética , Borrelia burgdorferi/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteínas Hemolisinas/genética , Hemólisis , Proteínas de la Membrana/genética , Regulación hacia Arriba , Proteínas Virales/genética
16.
Infect Immun ; 74(11): 6505-8, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16923786

RESUMEN

ClyASTy and ClyASPaA are closely related pore-forming cytolysins of Salmonella enterica serovars Typhi and Paratyphi A whose expression is strongly repressed under standard in vitro growth conditions. We show here that human infections by these pathogens cause a specific antibody response to ClyA, indicating effective toxin production during infection.


Asunto(s)
Citotoxinas/biosíntesis , Fiebre Paratifoidea/metabolismo , Salmonella paratyphi A/fisiología , Salmonella typhi/fisiología , Fiebre Tifoidea/metabolismo , Citotoxinas/análisis , Citotoxinas/sangre , Citotoxinas/inmunología , Humanos , Fiebre Paratifoidea/sangre , Fiebre Paratifoidea/inmunología , Salmonella paratyphi A/inmunología , Salmonella typhi/inmunología , Especificidad de la Especie , Fiebre Tifoidea/sangre , Fiebre Tifoidea/inmunología
17.
J Bacteriol ; 186(16): 5311-20, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15292132

RESUMEN

Cytolysin A (ClyA) of Escherichia coli is a pore-forming hemolytic protein encoded by the clyA (hlyE, sheA) gene that was first identified in E. coli K-12. In this study we examined various clinical E. coli isolates with regard to the presence and integrity of clyA. PCR and DNA sequence analyses demonstrated that 19 of 23 tested Shiga toxin-producing E. coli (STEC) strains, all 7 tested enteroinvasive E. coli (EIEC) strains, 6 of 8 enteroaggregative E. coli (EAEC) strains, and 4 of 7 tested enterotoxigenic E. coli (ETEC) strains possess a complete clyA gene. The remaining STEC, EAEC, and ETEC strains and 9 of the 17 tested enteropathogenic E. coli (EPEC) strains were shown to harbor mutant clyA derivatives containing 1-bp frameshift mutations that cause premature termination of the coding sequence. The other eight EPEC strains and all tested uropathogenic and new-born meningitis-associated E. coli strains (n = 14 and 3, respectively) carried only nonfunctional clyA fragments due to the deletion of two sequences of 493 bp and 204 or 217 bp at the clyA locus. Expression of clyA from clinical E. coli isolates proved to be positively controlled by the transcriptional regulator SlyA. Several tested E. coli strains harboring a functional clyA gene produced basal amounts of ClyA when grown under standard laboratory conditions, but most of them showed a clyA-dependent hemolytic phenotype only when SlyA was overexpressed. The presented data indicate that cytolysin A can play a role only for some of the pathogenic E. coli strains.


Asunto(s)
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/toxicidad , Escherichia coli/genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidad , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Proteínas Bacterianas/toxicidad , Codón sin Sentido , ADN Bacteriano/análisis , ADN Bacteriano/química , ADN Bacteriano/aislamiento & purificación , Escherichia coli/aislamiento & purificación , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/química , Mutación del Sistema de Lectura , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Proteínas Hemolisinas/química , Hemólisis , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Alineación de Secuencia , Análisis de Secuencia de ADN , Eliminación de Secuencia , Factores de Transcripción/fisiología , Factores de Virulencia/genética , Factores de Virulencia/toxicidad
18.
J Bacteriol ; 184(13): 3549-59, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12057949

RESUMEN

SlyA is a transcriptional regulator of Escherichia coli, Salmonella enterica, and other bacteria belonging to the ENTEROBACTERIACEAE: The SlyA protein has been shown to be involved in the virulence of S. enterica serovar Typhimurium, but its role in E. coli is unclear. In this study, we employed the proteome technology to analyze the SlyA regulons of enteroinvasive E. coli (EIEC) and Salmonella serovar Typhimurium. In both cases, comparative analysis of the two-dimensional protein maps of a wild-type strain, a SlyA-overproducing derivative, and a corresponding slyA mutant revealed numerous proteins whose expression appeared to be either positively or negatively controlled by SlyA. Twenty of the putative SlyA-induced proteins and 13 of the putative SlyA-repressed proteins of the tested EIEC strain were identified by mass spectrometry. The former proteins included several molecular chaperones (GroEL, GroES, DnaK, GrpE, and CbpA), proteins involved in acid resistance (HdeA, HdeB, and GadA), the "starvation lipoprotein" (Slp), cytolysin ClyA (HlyE or SheA), and several enzymes involved in metabolic pathways, whereas most of the latter proteins proved to be biosynthetic enzymes. Consistently, the resistance of the EIEC slyA mutant to heat and acid stress was impaired compared to that of the wild-type strain. Furthermore, the implication of SlyA in the regulation of several of the identified E. coli proteins was confirmed at the level of transcription with lacZ fusions. Twenty-three of the Salmonella serovar Typhimurium proteins found to be affected by SlyA were also identified by mass spectrometry. With the exception of GroEL these differed from those identified in the EIEC strain and included proteins involved in various processes. The data suggest that gene regulation by SlyA might be crucial for intracellular survival and/or replication of both EIEC and Salmonella serovar Typhimurium in phagocytic host cells.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Proteínas de Escherichia coli , Escherichia coli/genética , Proteínas Hemolisinas/genética , Salmonella typhimurium/genética , Factores de Transcripción , Ácidos/farmacología , Proteínas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Proteínas de Unión al Calcio/genética , Chaperonina 10/genética , Chaperonina 60/genética , Electroforesis en Gel Bidimensional , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Glutamato Descarboxilasa/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico , Proteínas Hemolisinas/metabolismo , Proteínas de la Membrana/genética , Proteínas Protozoarias/genética , Salmonella typhimurium/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA