Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Behav Neurosci ; 13: 141, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31293404

RESUMEN

Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and autism. FXS is also accompanied by attention problems, hyperactivity, anxiety, aggression, poor sleep, repetitive behaviors, and self-injury. Recent work supports the role of γ-aminobutyric-acid (GABA), the primary inhibitory neurotransmitter in the brain, in mediating symptoms of FXS. Deficits in GABA machinery have been observed in a mouse model of FXS, including a loss of tonic inhibition in the amygdala, which is mediated by extrasynaptic GABAA receptors. Humans with FXS also show reduced GABAA receptor availability. Here, we sought to evaluate the potential of gaboxadol (also called OV101 and THIP), a selective and potent agonist for delta-subunit-containing extrasynaptic GABAA receptors (dSEGA), as a therapeutic agent for FXS by assessing its ability to normalize aberrant behaviors in a relatively uncharacterized mouse model of FXS (Fmr1 KO2 mice). Four behavioral domains (hyperactivity, anxiety, aggression, and repetitive behaviors) were probed using a battery of behavioral assays. The results showed that Fmr1 KO2 mice were hyperactive, had abnormal anxiety-like behavior, were more irritable and aggressive, and had an increased frequency of repetitive behaviors compared to wild-type (WT) littermates, which are all behavioral deficits reminiscent of individuals with FXS. Treatment with gaboxadol normalized all of the aberrant behaviors observed in Fmr1 KO2 mice back to WT levels, providing evidence of its potential benefit for treating FXS. We show that the potentiation of extrasynaptic GABA receptors alone, by gaboxadol, is sufficient to normalize numerous behavioral deficits in the FXS model using endpoints that are directly translatable to the clinical presentation of FXS. Taken together, these data support the future evaluation of gaboxadol in individuals with FXS, particularly with regard to symptoms of hyperactivity, anxiety, irritability, aggression, and repetitive behaviors.

2.
Sci Adv ; 5(4): eaaw1567, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31001591

RESUMEN

Designer receptors exclusively activated by designer drugs (DREADDs) derived from muscarinic receptors not only are a powerful tool to test causality in basic neuroscience but also are potentially amenable to clinical translation. A major obstacle, however, is that the widely used agonist clozapine N-oxide undergoes conversion to clozapine, which penetrates the blood-brain barrier but has an unfavorable side effect profile. Perlapine has been reported to activate DREADDs at nanomolar concentrations but is not approved for use in humans by the Food and Drug Administration or the European Medicines Agency, limiting its translational potential. Here, we report that the atypical antipsychotic drug olanzapine, widely available in various formulations, is a potent agonist of the human M4 muscarinic receptor-based DREADD, facilitating clinical translation of chemogenetics to treat central nervous system diseases.


Asunto(s)
Drogas de Diseño/farmacología , Olanzapina/química , Olanzapina/farmacología , Receptor Muscarínico M4/agonistas , Receptor Muscarínico M4/genética , Inhibidores Selectivos de la Recaptación de Serotonina/química , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Simulación por Computador , Drogas de Diseño/química , Ensayos Analíticos de Alto Rendimiento , Humanos , Transducción de Señal
3.
J Neurosci ; 36(45): 11427-11434, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27911745

RESUMEN

Neuroepigenetics is a newly emerging field in neurobiology that addresses the epigenetic mechanism of gene expression regulation in various postmitotic neurons, both over time and in response to environmental stimuli. In addition to its fundamental contribution to our understanding of basic neuronal physiology, alterations in these neuroepigenetic mechanisms have been recently linked to numerous neurodevelopmental, psychiatric, and neurodegenerative disorders. This article provides a selective review of the role of DNA and histone modifications in neuronal signal-induced gene expression regulation, plasticity, and survival and how targeting these mechanisms could advance the development of future therapies. In addition, we discuss a recent discovery on how double-strand breaks of genomic DNA mediate the rapid induction of activity-dependent gene expression in neurons.


Asunto(s)
Encéfalo/fisiología , Epigénesis Genética/genética , Regulación del Desarrollo de la Expresión Génica/genética , Modelos Genéticos , Proteínas del Tejido Nervioso/genética , Neuronas/fisiología , Animales , Humanos
4.
Nat Neurosci ; 19(10): 1321-30, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27526204

RESUMEN

Normal brain function depends on the interaction between highly specialized neurons that operate within anatomically and functionally distinct brain regions. Neuronal specification is driven by transcriptional programs that are established during early neuronal development and remain in place in the adult brain. The fidelity of neuronal specification depends on the robustness of the transcriptional program that supports the neuron type-specific gene expression patterns. Here we show that polycomb repressive complex 2 (PRC2), which supports neuron specification during differentiation, contributes to the suppression of a transcriptional program that is detrimental to adult neuron function and survival. We show that PRC2 deficiency in striatal neurons leads to the de-repression of selected, predominantly bivalent PRC2 target genes that are dominated by self-regulating transcription factors normally suppressed in these neurons. The transcriptional changes in PRC2-deficient neurons lead to progressive and fatal neurodegeneration in mice. Our results point to a key role of PRC2 in protecting neurons against degeneration.


Asunto(s)
Silenciador del Gen , Degeneración Nerviosa/genética , Complejo Represivo Polycomb 2/metabolismo , Animales , Muerte Celular/genética , Supervivencia Celular/genética , Regulación hacia Abajo , Femenino , N-Metiltransferasa de Histona-Lisina/metabolismo , Masculino , Ratones , Ratones Noqueados , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Complejo Represivo Polycomb 2/deficiencia , Complejo Represivo Polycomb 2/genética
5.
J Exp Med ; 212(11): 1771-81, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26392221

RESUMEN

Studies investigating the causes of autism spectrum disorder (ASD) point to genetic, as well as epigenetic, mechanisms of the disease. Identification of epigenetic processes that contribute to ASD development and progression is of major importance and may lead to the development of novel therapeutic strategies. Here, we identify the bromodomain and extraterminal domain-containing proteins (BETs) as epigenetic regulators of genes involved in ASD-like behaviors in mice. We found that the pharmacological suppression of BET proteins in the brain of young mice, by the novel, highly specific, brain-permeable inhibitor I-BET858 leads to selective suppression of neuronal gene expression followed by the development of an autism-like syndrome. Many of the I-BET858-affected genes have been linked to ASD in humans, thus suggesting the key role of the BET-controlled gene network in the disorder. Our studies suggest that environmental factors controlling BET proteins or their target genes may contribute to the epigenetic mechanism of ASD.


Asunto(s)
Trastorno del Espectro Autista/etiología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Receptores de Superficie Celular/antagonistas & inhibidores , Animales , Trastorno del Espectro Autista/genética , Factor Neurotrófico Derivado del Encéfalo/farmacología , Epigénesis Genética , Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Nature ; 516(7531): 349-54, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25519132

RESUMEN

Naturally occurring variations of Polycomb repressive complex 1 (PRC1) comprise a core assembly of Polycomb group proteins and additional factors that include, surprisingly, autism susceptibility candidate 2 (AUTS2). Although AUTS2 is often disrupted in patients with neuronal disorders, the mechanism underlying the pathogenesis is unclear. We investigated the role of AUTS2 as part of a previously identified PRC1 complex (PRC1-AUTS2), and in the context of neurodevelopment. In contrast to the canonical role of PRC1 in gene repression, PRC1-AUTS2 activates transcription. Biochemical studies demonstrate that the CK2 component of PRC1-AUTS2 neutralizes PRC1 repressive activity, whereas AUTS2-mediated recruitment of P300 leads to gene activation. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) demonstrated that AUTS2 regulates neuronal gene expression through promoter association. Conditional targeting of Auts2 in the mouse central nervous system (CNS) leads to various developmental defects. These findings reveal a natural means of subverting PRC1 activity, linking key epigenetic modulators with neuronal functions and diseases.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Sistema Nervioso Central/metabolismo , Regulación de la Expresión Génica/genética , Proteínas/metabolismo , Animales , Conducta Animal/fisiología , Proteínas de Ciclo Celular/genética , Proteínas del Citoesqueleto , Femenino , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Genotipo , Células HEK293 , Histonas/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Proteínas/genética , Factores de Transcripción , Ubiquitinación
7.
Nat Neurosci ; 17(4): 533-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24584053

RESUMEN

Cocaine-mediated repression of the histone methyltransferase (HMT) G9a has recently been implicated in transcriptional, morphological and behavioral responses to chronic cocaine administration. Here, using a ribosomal affinity purification approach, we found that G9a repression by cocaine occurred in both Drd1-expressing (striatonigral) and Drd2-expressing (striatopallidal) medium spiny neurons. Conditional knockout and overexpression of G9a within these distinct cell types, however, revealed divergent behavioral phenotypes in response to repeated cocaine treatment. Our studies further indicated that such developmental deletion of G9a selectively in Drd2 neurons resulted in the unsilencing of transcriptional programs normally specific to striatonigral neurons and in the acquisition of Drd1-associated projection and electrophysiological properties. This partial striatopallidal to striatonigral 'switching' phenotype in mice indicates a new role for G9a in contributing to neuronal subtype identity and suggests a critical function for cell type-specific histone methylation patterns in the regulation of behavioral responses to environmental stimuli.


Asunto(s)
Cuerpo Estriado/citología , Neuronas Dopaminérgicas/fisiología , N-Metiltransferasa de Histona-Lisina/fisiología , Adolescente , Adulto , Anciano , Animales , Cocaína/administración & dosificación , Cocaína/farmacología , Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/metabolismo , Femenino , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Masculino , Ratones , Persona de Mediana Edad , Especificidad de Órganos , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Adulto Joven
8.
Science ; 342(6163): 1254-8, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24311694

RESUMEN

The control of motor behavior in animals and humans requires constant adaptation of neuronal networks to signals of various types and strengths. We found that microRNA-128 (miR-128), which is expressed in adult neurons, regulates motor behavior by modulating neuronal signaling networks and excitability. miR-128 governs motor activity by suppressing the expression of various ion channels and signaling components of the extracellular signal-regulated kinase ERK2 network that regulate neuronal excitability. In mice, a reduction of miR-128 expression in postnatal neurons causes increased motor activity and fatal epilepsy. Overexpression of miR-128 attenuates neuronal responsiveness, suppresses motor activity, and alleviates motor abnormalities associated with Parkinson's-like disease and seizures in mice. These data suggest a therapeutic potential for miR-128 in the treatment of epilepsy and movement disorders.


Asunto(s)
MicroARNs/metabolismo , Actividad Motora , Neuronas/fisiología , Prosencéfalo/fisiología , Animales , Cuerpo Estriado/citología , Dendritas/fisiología , Epilepsia/metabolismo , Hipercinesia/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , MicroARNs/genética , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/fisiopatología , Prosencéfalo/citología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Regulación hacia Arriba
9.
Nat Cell Biol ; 13(6): 676-85, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21602796

RESUMEN

Polarized neurites (axons and dendrites) form the functional circuitry of the nervous system. Secreted guidance cues often control the polarity of neuron migration and neurite outgrowth by regulating ion channels. Here, we show that secreted semaphorin 3A (Sema3A) induces the neurite identity of Xenopus spinal commissural interneurons (xSCINs) by activating Ca(V)2.3 channels (Ca(V)2.3). Sema3A treatment converted the identity of axons of cultured xSCINs to that of dendrites by recruiting functional Ca(V)2.3. Inhibition of Sema3A signalling prevented both the expression of Ca(V)2.3 and acquisition of the dendrite identity, and inhibition of Ca(V)2.3 function resulted in multiple axon-like neurites of xSCINs in the spinal cord. Furthermore, Sema3A-triggered cGMP production and PKG activity induced, respectively, the expression of functional Ca(V)2.3 and the dendrite identity. These results reveal a mechanism by which a guidance cue controls the identity of neurites during nervous system development.


Asunto(s)
Canales de Calcio Tipo R/metabolismo , Proteínas de Transporte de Catión/metabolismo , Sistema Nervioso/embriología , Semaforina-3A/metabolismo , Xenopus/embriología , Secuencia de Aminoácidos , Animales , Axones/efectos de los fármacos , Axones/fisiología , Secuencia de Bases , Western Blotting , Células Cultivadas , Dendritas/efectos de los fármacos , Dendritas/fisiología , Embrión no Mamífero/efectos de los fármacos , Inmunohistoquímica , Datos de Secuencia Molecular , Sistema Nervioso/efectos de los fármacos , Semaforina-3A/farmacología , Alineación de Secuencia
10.
Neuron ; 58(5): 694-707, 2008 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-18549782

RESUMEN

Cyclic nucleotide-gated channels (CNGCs) transduce external signals required for sensory processes, e.g., photoreception, olfaction, and taste. Nerve growth cone guidance by diffusible attractive and repulsive molecules is regulated by differential growth cone Ca2+ signaling. However, the Ca2+-conducting ion channels that transduce guidance molecule signals are largely unknown. We show that rod-type CNGC-like channels function in the repulsion of cultured Xenopus spinal neuron growth cones by Sema3A, which triggers the production of the cGMP that activates the Xenopus CNGA1 (xCNGA1) subunit-containing channels in interneurons. Downregulation of xCNGA1 or overexpression of a mutant xCNGA1 incapable of binding cGMP abolished CNG currents and converted growth cone repulsion to attraction in response to Sema3A. We also show that Ca2+ entry through xCNGCs is required to mediate the repulsive Sema3A signal. These studies extend our knowledge of the function of CNGCs by demonstrating their requirement for signal transduction in growth cone guidance.


Asunto(s)
GMP Cíclico/fisiología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/fisiología , Conos de Crecimiento/efectos de los fármacos , Canales Iónicos/fisiología , Neuronas/citología , Semaforina-3A/farmacología , Animales , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Proteínas Portadoras/farmacología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Embrión no Mamífero , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intercelular , Canales Iónicos/genética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Microinyecciones , Modelos Biológicos , Morfolinas/farmacología , Neuronas/efectos de los fármacos , Compuestos Orgánicos/farmacocinética , Técnicas de Placa-Clamp/métodos , Péptidos/farmacología , Médula Espinal/citología , Estadísticas no Paramétricas , Factores de Tiempo , Transcripción Genética , Xenopus laevis
11.
Nat Neurosci ; 11(7): 762-71, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18536712

RESUMEN

Plasma membrane potentials gate the ion channel conductance that controls external signal-induced neuronal functions. We found that diffusible guidance molecules caused membrane potential shifts that resulted in repulsion or attraction of Xenopus laevis spinal neuron growth cones. The repellents Sema3A and Slit2 caused hyperpolarization, and the attractants netrin-1 and BDNF caused depolarization. Clamping the growth-cone potential at the resting state prevented Sema3A-induced repulsion; depolarizing potentials converted the repulsion to attraction, whereas hyperpolarizing potentials had no effect. Sema3A increased the intracellular concentration of guanosine 3',5'-cyclic monophosphate ([cGMP]i) by soluble guanylyl cyclase, resulting in fast onset and long-lasting hyperpolarization. Pharmacological increase of [cGMP](i) caused protein kinase G (PKG)-mediated depolarization, switching Sema3A-induced repulsion to attraction. This bimodal switch required activation of either Cl(-) or Na+ channels, which, in turn, regulated the differential intracellular Ca2+ concentration increase across the growth cone. Thus, the polarity of growth-cone potential shifts imposes either attraction or repulsion, and Sema3A achieves this through cGMP signaling.


Asunto(s)
Conos de Crecimiento/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/farmacología , Potenciales de la Membrana/fisiología , Neuronas/citología , Transducción de Señal/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/farmacología , Calcio/metabolismo , Células Cultivadas , GMP Cíclico/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Ácido Egtácico/análogos & derivados , Ácido Egtácico/metabolismo , Conos de Crecimiento/fisiología , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intercelular/farmacología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/efectos de la radiación , Microinyecciones/métodos , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/farmacología , Proteínas del Tejido Nervioso/farmacología , Netrina-1 , Técnicas de Placa-Clamp/métodos , Potasio/farmacología , Semaforina-3A/farmacología , Transducción de Señal/efectos de los fármacos , Estilbenos/farmacología , Factores de Tiempo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/farmacología , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA