Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biol Pharm Bull ; 47(7): 1392-1395, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39085137

RESUMEN

18-ß-Glycyrrhetinic acid, a major component of licorice, stimulated the proliferation of both dermal papilla cells and outer root sheath cells isolated from human hair follicles. Thus, suggesting that this compound promotes hair growth. Furthermore, this compound inhibited the activity of testosterone 5α-reductase, an enzyme responsible for converting androgen to dihydroandrogen, with an IC50 of 137.1 µM. 18-ß-Glycyrrhetinic acid also suppressed the expression of transforming growth factor-ß1 (TGF-ß1), which shifts the hair cycle from the anagen phase to the telogen phase. It suggested that this compound may prolong the anagen phase. Based on these findings, this compound could be a potentially effective treatment for androgenetic alopecia.


Asunto(s)
Inhibidores de 5-alfa-Reductasa , Proliferación Celular , Ácido Glicirretínico , Folículo Piloso , Ácido Glicirretínico/farmacología , Ácido Glicirretínico/análogos & derivados , Humanos , Proliferación Celular/efectos de los fármacos , Folículo Piloso/efectos de los fármacos , Folículo Piloso/citología , Inhibidores de 5-alfa-Reductasa/farmacología , Células Cultivadas , Cabello/crecimiento & desarrollo , Cabello/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Alopecia/tratamiento farmacológico , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética
2.
Pathol Res Pract ; 257: 155295, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38603841

RESUMEN

Tobacco smoking is a leading cause of preventable mortality, and it is the major contributor to diseases such as COPD and lung cancer. Cigarette smoke compromises the pulmonary antiviral immune response, increasing susceptibility to viral infections. There is currently no therapy that specifically addresses the problem of impaired antiviral response in cigarette smokers and COPD patients, highlighting the necessity to develop novel treatment strategies. 18-ß-glycyrrhetinic acid (18-ß-gly) is a phytoceutical derived from licorice with promising anti-inflammatory, antioxidant, and antiviral activities whose clinical application is hampered by poor solubility. This study explores the therapeutic potential of an advanced drug delivery system encapsulating 18-ß-gly in poly lactic-co-glycolic acid (PLGA) nanoparticles in addressing the impaired antiviral immunity observed in smokers and COPD patients. Exposure of BCi-NS1.1 human bronchial epithelial cells to cigarette smoke extract (CSE) resulted in reduced expression of critical antiviral chemokines (IP-10, I-TAC, MIP-1α/1ß), mimicking what happens in smokers and COPD patients. Treatment with 18-ß-gly-PLGA nanoparticles partially restored the expression of these chemokines, demonstrating promising therapeutic impact. The nanoparticles increased IP-10, I-TAC, and MIP-1α/1ß levels, exhibiting potential in attenuating the negative effects of cigarette smoke on the antiviral response. This study provides a novel approach to address the impaired antiviral immune response in vulnerable populations, offering a foundation for further investigations and potential therapeutic interventions. Further studies, including a comprehensive in vitro characterization and in vivo testing, are warranted to validate the therapeutic efficacy of 18-ß-gly-PLGA nanoparticles in respiratory disorders associated with compromised antiviral immunity.


Asunto(s)
Ácido Glicirretínico , Nanopartículas , Humanos , Ácido Glicirretínico/farmacología , Ácido Glicirretínico/análogos & derivados , Antivirales/farmacología , Humo/efectos adversos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Línea Celular , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Fumar Cigarrillos/efectos adversos
3.
Iran J Pharm Res ; 14(2): 373-83, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25901144

RESUMEN

The aim of the present study was to formulate poly (lactide-co-glycolide) (PLGA) nanoparticles loaded with 18-ß-glycyrrhetinic acid (GLA) with appropriate physicochemical properties and antimicrobial activity. GLA loaded PLGA nanoparticles were prepared with different drug to polymer ratios, acetone contents and sonication times and the antibacterial activity of the developed nanoparticles was examined against different gram-negative and gram-positive bacteria. The antibacterial effect was studied using serial dilution technique to determine the minimum inhibitory concentration of nanoparticles. Results demonstrated that physicochemical properties of nanoparticles were affected by the above mentioned parameters where nanoscale size particles ranging from 175 to 212 nm were achieved. The highest encapsulation efficiency (53.2 ± 2.4%) was obtained when the ratio of drug to polymer was 1:4. Zeta potential of the developed nanoparticles was fairly negative (-11±1.5). In-vitro release profile of nanoparticles showed two phases: an initial phase of burst release for 10 h followed by a slow release pattern up to the end. The antimicrobial results revealed that the nanoparticles were more effective than pure GLA against P. aeuroginosa, S. aureus and S. epidermidis. This improvement in antibacterial activity of GLA loaded nanoparticles when compared to pure GLA may be related to higher nanoparticles penetration into infected cells and a higher amount of GLA delivery in its site of action. Herein, it was shown that GLA loaded PLGA nanoparticles displayed appropriate physicochemical properties as well as an improved antimicrobial effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...