Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Theranostics ; 14(10): 3827-3842, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994027

RESUMEN

Rationale: In male mammals, many developmental-stage-specific RNA transcripts (both coding and noncoding) are preferentially or exclusively expressed in the testis, where they play important roles in spermatogenesis and male fertility. However, a reliable platform for efficiently depleting various types of RNA transcripts to study their biological functions during spermatogenesis in vivo has not been developed. Methods: We used an adeno-associated virus serotype nine (AAV9)-mediated CRISPR-CasRx system to knock down the expression of exogenous and endogenous RNA transcripts in the testis. Virus particles were injected into the seminiferous tubules via the efferent duct. Using an autophagy inhibitor, 3-methyladenine (3-MA), we optimized the AAV9 transduction efficiency in germ cells in vivo. Results: AAV9-mediated delivery of CRISPR-CasRx effectively and specifically induces RNA transcripts (both coding and noncoding) knockdown in the testis in vivo. In addition, we showed that the co-microinjection of AAV9 and 3-MA into the seminiferous tubules enabled long-term transgene expression in the testis. Finally, we found that a promoter of Sycp1 gene induced CRISPR-CasRx-mediated RNA transcript knockdown in a germ-cell-type-specific manner. Conclusion: Our results demonstrate the efficacy and versatility of the AAV9-mediated CRISPR-CasRx system as a flexible knockdown platform for studying gene function during spermatogenesis in vivo. This approach may advance the development of RNA-targeting therapies for conditions affecting reproductive health.


Asunto(s)
Sistemas CRISPR-Cas , Dependovirus , Técnicas de Silenciamiento del Gen , Espermatogénesis , Testículo , Masculino , Animales , Dependovirus/genética , Sistemas CRISPR-Cas/genética , Ratones , Testículo/metabolismo , Técnicas de Silenciamiento del Gen/métodos , Espermatogénesis/genética , ARN/genética , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación
2.
Biol Trace Elem Res ; 202(4): 1699-1710, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37454307

RESUMEN

Dietary selenium intake within the normal physiological range is critical for various supporting biological functions. However, the effect of nano-selenium on biological mechanism of goblet cells associated with autophagy is largely unknown.The purpose of this study was to investigate the effect of nano-selenium on the mucosal immune-defense mechanism of goblet cells (GCs) in the small intestine of laying hens.The autophagy was determined by using specific markers. Nano-selenium-treated group of immunohistochemistry (IHC), immunofluorescence (IF), and western blotting (WB) results indicated the strong positive immune signaling of microtubule-associated light chain (LC3) within the mucosal surface of the small intestine. However, weak expression of LC3 was observed in the 3-methyladenine autophagy inhibitor (3-MA) group. IHC and IF staining results showed the opposite tendency for LC3 of sequestosome 1 (P62/SQSTM1). P62/SQSTM1 showed strong positive immune signaling within the mucosal surface of the small intestine of the 3-MAgroup, and weak immune signaling of P62/SQSTM1 in the nano-selenium-treated group. Moreover, pinpointing autophagy was involved in the mucosal production and enrichment of mucosal immunity of the GCs. The morphology and ultrastructure evidence showed that the mucus secretion of GCs was significantly increased after nano-selenium treatment confirmed by light and transmission electron microscopy. Besides that, immunostaining of IHC, IF and WB showed that autophagy enhanced the secretion of Mucin2 (Muc2) protein in nano-selenium-treated group. This work illustrates that the nano-selenium particle might enhance the mucosal immune-defense mechanism via the protective role of GCs for intestinal homeostasis through autophagy.


Asunto(s)
Células Caliciformes , Selenio , Animales , Femenino , Células Caliciformes/metabolismo , Proteína Sequestosoma-1/metabolismo , Selenio/farmacología , Selenio/metabolismo , Pollos/metabolismo , Autofagia , Intestino Delgado/metabolismo
3.
J Nanobiotechnology ; 21(1): 340, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735391

RESUMEN

Flap necrosis, the most prevalent postoperative complication of reconstructive surgery, is significantly associated with ischaemia-reperfusion injury. Recent research indicates that exosomes derived from bone marrow mesenchymal stem cells (BMSCs) hold potential therapeutic applications in several diseases. Traditionally, BMSCs are cultured under normoxic conditions, a setting that diverges from their physiological hypoxic environment in vivo. Consequently, we propose a method involving the hypoxic preconditioning of BMSCs, aimed at exploring the function and the specific mechanisms of their exosomes in ischaemia-reperfusion skin flaps. This study constructed a 3 × 6 cm2 caudal superficial epigastric skin flap model and subjected it to ischaemic conditions for 6 h. Our findings reveal that exosomes from hypoxia-pretreated BMSCs significantly promoted flap survival, decrease MCP-1, IL-1ß, and IL-6 levels in ischaemia-reperfusion injured flap, and reduce oxidative stress injury and apoptosis. Moreover, results indicated that Hypo-Exo provides protection to vascular endothelial cells from ischaemia-reperfusion injury both in vivo and in vitro. Through high-throughput sequencing and bioinformatics analysis, we further compared the differential miRNA expression profiles between Hypo-Exo and normoxic exosomes. Results display the enrichment of several pathways, including autophagy and mTOR. We have also elucidated a mechanism wherein Hypo-Exo promotes the survival of ischaemia-reperfusion injured flaps. This mechanism involves carrying large amounts of miR-421-3p, which target and regulate mTOR, thereby upregulating the expression of phosphorylated ULK1 and FUNDC1, and subsequently further activating autophagy. In summary, hypoxic preconditioning constitutes an effective and promising method for optimizing the therapeutic effects of BMSC-derived exosomes in the treatment of flap ischaemia-reperfusion injury.


Asunto(s)
Exosomas , MicroARNs , Daño por Reperfusión , Humanos , Células Endoteliales , Daño por Reperfusión/terapia , Estrés Oxidativo , Hipoxia , Homólogo de la Proteína 1 Relacionada con la Autofagia , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana , Proteínas Mitocondriales , MicroARNs/genética
4.
Exp Cell Res ; 431(1): 113742, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37574036

RESUMEN

Aberrant epigenetic modifications or events regulate autophagy to influence tumor progression, which has gained increasing attention. KDM6B is an essential histone demethylase that participates in multiple processes of tumors, but its role in thyroid carcinoma (THCA) remains to be unknown. Here, in this study, we used the MTT assay to screen and validate that KDM6B is an essential demethylase for THCA. KDM6B promotes THCA proliferation, migration, invasion in vitro and in vivo. Transcriptional factor E2F1 directly binds to the promoter region of KDM6B and regulates its mRNA levels in THCA. E2F1 partially depended on KDM6B to exert its oncogenic functions. Mechanistically, KDM6B binds to TFEB promoter region and mediates the demethylation of H3K27me3. KDM6B depended on TFEB to activate a series of lysosomal-related genes. KDM6B enhances autophagy process, as evidenced by elevated p62 and Beclin-1 proteins. KDM6B depended on TFEB-driven autophagy activity to accelerate THCA progression. Lastly, targeting autophagy with 3-MA could notably abrogate growth of KDM6Bhigh THCA, but has mild influence on KDM6Blow THCA. Together, this study identified KDM6B as an essential epigenetic regulator for THCA, functioning as an autophagy regulator. The fundamental mechanisms underlying E2F1/KDM6B/TFEB axis provided novel vulnerabilities for THCA treatment.


Asunto(s)
Histona Demetilasas , Neoplasias de la Tiroides , Humanos , Histona Demetilasas/genética , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Autofagia/genética , Neoplasias de la Tiroides/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factor de Transcripción E2F1/genética
5.
Toxicology ; 490: 153512, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37062353

RESUMEN

Anthracycline antineoplastics are effective in the treatment of hematological malignancies and solid tumors. However, the anthracycline-induced cardiotoxicity (AIC) limits their use as chemotherapeutic agents. Autophagy-based therapies have been explored to prevent AIC. Yet, whether inhibition of autophagy during its early stage could alleviate AIC remains unclear. In this study, we firstly observed the activation of autophagy during AIC in both cardiomyocyte cell lines AC16 and H9c2. Moreover, knockdown of Atg7, a key regulatory factor in early autophagy, could ameliorate the effects of DOX-induced AIC. Importantly, the use of early autophagy inhibitor 3-MA protected cardiomyocyte cells from DOX-induced cardiotoxicity in vitro and in a chronic AIC mouse model. Our findings demonstrate that inhibiting early stage of autophagy may be an effective preventative therapeutic strategy to protect cardiac function from AIC.


Asunto(s)
Cardiotoxicidad , Doxorrubicina , Ratones , Animales , Cardiotoxicidad/metabolismo , Doxorrubicina/toxicidad , Antibióticos Antineoplásicos/toxicidad , Miocitos Cardíacos , Autofagia , Antraciclinas/metabolismo , Antraciclinas/farmacología , Antraciclinas/uso terapéutico , Estrés Oxidativo , Apoptosis
6.
Toxicol In Vitro ; 87: 105520, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36410616

RESUMEN

MC-LR is one of the cyanotoxins produced by fresh water cyanobacteria. Previous studies showed that autophagy played an important role in MC-LR-induced reproduction toxicity. However, information on the toxicological mechanism is limited. In this study, MC-LR could induce autophagy and apoptosis in GCO cells in vitro. In GCO cells that had been exposed to MC-LR, the inhibitor of 3-MA effectively decreased cell viability and damaged cell ultrastructure. Oxidative stress was significantly increased in the 3-MA + MC-LR group, accompanied by significantly increased MDA content and decreased CAT activity and GST, SOD1, GPx, and GR expression levels (P < 0.05). Inflammation was more serious in the 3-MA + MC-LR group than that of MC-LR group, which was evidenced by increasing expression levels of TNFα, IL11, MyD88, TNFR1, TRAF2, JNK, CCL4, and CCL20 (P < 0.05). Interestingly, the significant decrease of Caspase-9, Caspase-7, and Bax expression and significant increase of Bcl-2 and Bcl-2/Bax ratio in 3-MA + MC-LR group compared to MC-LR group, suggesting that extent of apoptosis were reduced. Taken together, these results indicated that MC-LR induced autophagy and apoptosis in GCO cells, however, the inhibition of autophagy decreased the extent of apoptosis, induced more serious oxidative stress and inflammation, which eventually induced cell death. Our findings provided some information for exploring the toxicity of MC-LR, however, the role of autophagy require further study in vivo.


Asunto(s)
Carpas , Animales , Femenino , Proteína X Asociada a bcl-2/metabolismo , Ovario/metabolismo , Estrés Oxidativo , Apoptosis , Microcistinas/toxicidad , Microcistinas/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Autofagia
7.
Autophagy ; 19(4): 1277-1292, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36131358

RESUMEN

How macroautophagy/autophagy influences neurofilament (NF) proteins in neurons, a frequent target in neurodegenerative diseases and injury, is not known. NFs in axons have exceptionally long half-lives in vivo enabling formation of large stable supporting networks, but they can be rapidly degraded during Wallerian degeneration initiated by a limited calpain cleavage. Here, we identify autophagy as a previously unrecognized pathway for NF subunit protein degradation that modulates constitutive and inducible NF turnover in vivo. Levels of NEFL/NF-L, NEFM/NF-M, and NEFH/NF-H subunits rise substantially in neuroblastoma (N2a) cells after blocking autophagy either with the phosphatidylinositol 3-kinase (PtdIns3K) inhibitor 3-methyladenine (3-MA), by depleting ATG5 expression with shRNA, or by using both treatments. In contrast, activating autophagy with rapamycin significantly lowers NF levels in N2a cells. In the mouse brain, NF subunit levels increase in vivo after intracerebroventricular infusion of 3-MA. Furthermore, using tomographic confocal microscopy, immunoelectron microscopy, and biochemical fractionation, we demonstrate the presence of NF proteins intra-lumenally within autophagosomes (APs), autolysosomes (ALs), and lysosomes (LYs). Our findings establish a prominent role for autophagy in NF proteolysis. Autophagy may regulate axon cytoskeleton size and responses of the NF cytoskeleton to injury and disease.


Asunto(s)
Autofagia , Filamentos Intermedios , Ratones , Animales , Autofagia/fisiología , Proteolisis , Filamentos Intermedios/metabolismo , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Neuronas/metabolismo
8.
Pharmaceutics ; 14(8)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36015330

RESUMEN

The emergence of chemoresistance in neoplastic cells is one of the major obstacles in cancer therapy. Autophagy was recently reported as one of the mechanisms that promote chemoresistance in cancer cells by protecting against apoptosis and driving senescence. Thus, understanding the role of autophagy and its underlying signaling pathways is crucial for the development of new therapeutic strategies to overcome chemoresistance. We have previously reported that PKCη is a stress-induced kinase that confers resistance in breast cancer cells against chemotherapy by inducing senescence. Here, we show that PKCη promotes autophagy induced by ER and oxidative stress and facilitates the transition from autophagy to senescence. We demonstrate that PKCη knockdown reduces both the autophagic flux and markers of senescence. Additionally, using autophagy inhibitors such as chloroquine and 3-methyladenine, we show that PKCη and autophagy are required for establishing senescence in MCF-7 in response to oxidative stress. Different drugs used in the clinic are known to induce autophagy and senescence in breast cancer cells. Our study proposes PKCη as a target for therapeutic intervention, acting in synergy with autophagy-inducing drugs to overcome resistance and enhance cell death in breast cancer.

9.
J Ginseng Res ; 46(4): 536-542, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35818428

RESUMEN

Background: In aged skin, reactive oxygen species (ROS) induces degradation of the extracellular matrix (ECM), leading to visible aging signs. Collagens in the ECM are cleaved by matrix metalloproteinases (MMPs). Syringaresinol (SYR), isolated from Panax ginseng berry, has various physiological activities, including anti-inflammatory action. However, the anti-aging effects of SYR via antioxidant and autophagy regulation have not been elucidated. Methods: The preventive effect of SYR on skin aging was investigated in human HaCaT keratinocytes in the presence of H2O2, and the keratinocyte cells were treated with SYR (0-200 µg/mL). mRNA and protein levels of MMP-2 and -9 were determined by real-time PCR and Western blotting, respectively. Radical scavenging activity was researched by 2,2 diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. LC3B level was assessed by Western blotting and confocal microscopy. Results: SYR significantly reduced gene expression and protein levels of MMP-9 and -2 in both H2O2-treated and untreated HaCaT cells. SYR did not show cytotoxicity to HaCaT cells. SYR exhibited DPPH and ABTS radical scavenging activities with an EC50 value of 10.77 and 10.35 µg/mL, respectively. SYR elevated total levels of endogenous and exogenous LC3B in H2O2-stimulated HaCaT cells. 3-Methyladenine (3-MA), an autophagy inhibitor, counteracted the inhibitory effect of SYR on MMP-2 expression. Conclusion: SYR showed antioxidant activity and up-regulated autophagy activity in H2O2-stimulated HaCaT cells, lowering the expression of MMP-2 and MMP-9 associated with skin aging. Our results suggest that SYR has potential value as a cosmetic additive for prevention of skin aging.

10.
Acta Pharm Sin B ; 12(5): 2374-2390, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35646533

RESUMEN

Pathological cardiac hypertrophy serves as a significant foundation for cardiac dysfunction and heart failure. Recently, growing evidence has revealed that microRNAs (miRNAs) play multiple roles in biological processes and participate in cardiovascular diseases. In the present research, we investigate the impact of miRNA-34c-5p on cardiac hypertrophy and the mechanism involved. The expression of miR-34c-5p was proved to be elevated in heart tissues from isoprenaline (ISO)-infused mice. ISO also promoted miR-34c-5p level in primary cultures of neonatal rat cardiomyocytes (NRCMs). Transfection with miR-34c-5p mimic enhanced cell surface area and expression levels of foetal-type genes atrial natriuretic factor (Anf) and ß-myosin heavy chain (ß-Mhc) in NRCMs. In contrast, treatment with miR-34c-5p inhibitor attenuated ISO-induced hypertrophic responses. Enforced expression of miR-34c-5p by tail intravenous injection of its agomir led to cardiac dysfunction and hypertrophy in mice, whereas inhibiting miR-34c-5p by specific antagomir could protect the animals against ISO-triggered hypertrophic abnormalities. Mechanistically, miR-34c-5p suppressed autophagic flux in cardiomyocytes, which contributed to the development of hypertrophy. Furthermore, the autophagy-related gene 4B (ATG4B) was identified as a direct target of miR-34c-5p, and miR-34c-5p was certified to interact with 3' untranslated region of Atg4b mRNA by dual-luciferase reporter assay. miR-34c-5p reduced the expression of ATG4B, thereby resulting in decreased autophagy activity and induction of hypertrophy. Inhibition of miR-34c-5p abolished the detrimental effects of ISO by restoring ATG4B and increasing autophagy. In conclusion, our findings illuminate that miR-34c-5p participates in ISO-induced cardiac hypertrophy, at least partly through suppressing ATG4B and autophagy. It suggests that regulation of miR-34c-5p may offer a new way for handling hypertrophy-related cardiac dysfunction.

11.
Sensors (Basel) ; 22(12)2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35746210

RESUMEN

The paper addresses the investigation of microstructures from AISI 52100 and AISI 4140 in hardened as well as in quenched and tempered conditions. The specimens are compared in terms of their magnetic hysteresis and their microstructural and mechanical properties. Material properties were determined by hardness, microhardness, and X-ray diffraction measurements. Two different approaches were used to characterize magnetic properties via a hysteresis frame device, aiming, on the one hand, to record the magnetic hysteresis with established proceedings by setting a constant magnetic flux and, on the other hand, by offsetting a constant field strength to facilitate reproducibility of the results with other micromagnetic measurement systems. Comparable differences in both the micromagnetic and the mechanical material properties could be determined and quantified for the specifically manufactured specimens. The sensitivity of the magnetic hysteresis and, determined from that, the relationship between magnetic flux and magnetic field strength were confirmed. It was shown that a consistent change in hysteresis shape from hardened to high temperature tempered material states develops and that this change allows the characterization of different materials without the need to adjust magnetization parameters. Repeatedly, an increase in remanence with decreasing hardness was found for both test approaches. Likewise, a decreasing coercivity and increasing maximum magnetic flux could be detected with decreasing retained austenite content. The investigated correlations should thus contribute to the calibration of comparable measurement systems through the holistic characterized specimens.

12.
Theriogenology ; 189: 42-52, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35724451

RESUMEN

Modulation of phosphoinositide 3-kinase/protein kinase B/phosphatase and tensin homologue (PI3K/AKT/PTEN) pathway in mammals yields mixed results. A deep understanding of its regulation can be a powerful tool for better in vitro blastocyst production. This systematic review aims to map the evidence of PI3K/AKT/PTEN pathway modulation during in vitro maturation (IVM), to assess its effects on meiosis resumption and nuclear maturation progression of mammalian oocytes, and their impacts on embryo development and quality. A total of 1058 articles were screened in three databases, and 22 articles were included. Fifty-two IVM assessments were identified, among which 11 evaluated blastocyst yield. Three PI3K inhibitors (3-methyladenine, Wortmannin, and LY294002) and one AKT inhibitor (SH6) were investigated. The impact of this pathway modulation on meiosis resumption in swines and murines was not well established, depending on the inhibitor used, concentration, and media supplementation, while in bovines, resumption seems to be independent of PI3K/AKT/PTEN pathway. However, progression to metaphase II (MII) is highly controlled by this pathway on both bovines and swines. Studies that focused on the inhibition reversibility showed that the removal of the modulator produced MII rates similar to the control group. Experiments that aimed to temporarily block meiosis resumption or reduce PI3K activity resulted in blastocyst production equal to or even higher than control groups. Altogether, these data indicate the paramount potential of this pathway as a possible strategy to improve overall in vitro embryo production efficiency, by synchronizing both nuclear and cytoplasmic maturation.


Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos , Fosfatidilinositol 3-Quinasas , Animales , Técnicas de Maduración In Vitro de los Oocitos/métodos , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Mamíferos , Meiosis , Oocitos/fisiología , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Tensinas/metabolismo
13.
Int J Mol Sci ; 23(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35456915

RESUMEN

It was established that the synthesis of hybrid molecules containing a thiazolidinone and a (2Z)-2-chloro-3-(4-nitrophenyl)prop-2-ene structural fragments is an effective approach for the design of potential anticancer agents. Given the results of the previous SAR-analysis, the aim of the study was to synthesize a novel 4-thiazolidinone derivative Les-3331 and investigate its molecular mechanism of action in MCF-7 and MDA-MB-231 breast cancer cells. The cytotoxic properties and antiproliferative potential of Les-3331 were determined. The effect of the tested compound on apoptosis induction and mitochondrial membrane potential was checked by flow cytometry. ELISA was used to determine caspase-8 and caspase-9, LC3A, LC3B, Beclin-1, and topoisomerase II concentration. Additionally, PAMPA, in silico or in vitro prediction of metabolism, CYP3A4/2D6 inhibition, and an Ames test were performed. Les-3331 possesses high cytotoxic and antiproliferative activity in MCF-7 and MDA-MB-231 breast cancer cells. Its molecular mechanism of action is associated with apoptosis induction, decreased mitochondrial membrane potential, and increased caspase-9 and caspase-8 concentrations. Les-3331 decreased LC3A, LC3B, and Beclin-1 concentration in tested cell lines. Topoisomerase II concentration was also lowered. The most probable metabolic pathways and no DDIs risk of Les-3331 were confirmed in in vitro assays. Our studies confirmed that a novel 4-thiazolidinone derivative represents promising anti-breast cancer activity.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Antineoplásicos/química , Apoptosis , Beclina-1/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Caspasa 8/metabolismo , Caspasa 9/metabolismo , Línea Celular Tumoral , Proliferación Celular , ADN-Topoisomerasas de Tipo II/metabolismo , Femenino , Humanos , Nitrofenoles
14.
Acta Pharm Sin B ; 11(10): 3015-3034, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34729301

RESUMEN

Parkinson's disease (PD), known as one of the most universal neurodegenerative diseases, is a serious threat to the health of the elderly. The current treatment has been demonstrated to relieve symptoms, and the discovery of new small-molecule compounds has been regarded as a promising strategy. Of note, the homeostasis of the autolysosome pathway (ALP) is closely associated with PD, and impaired autophagy may cause the death of neurons and thereby accelerating the progress of PD. Thus, pharmacological targeting autophagy with small-molecule compounds has been drawn a rising attention so far. In this review, we focus on summarizing several autophagy-associated targets, such as AMPK, mTORC1, ULK1, IMPase, LRRK2, beclin-1, TFEB, GCase, ERRα, C-Abelson, and as well as their relevant small-molecule compounds in PD models, which will shed light on a clue on exploiting more potential targeted small-molecule drugs tracking PD treatment in the near future.

15.
Eur J Pharmacol ; 911: 174554, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34627804

RESUMEN

The purpose of this study is to investigate the protective effect of dehydrocostuslactone (DHL) on PC12 cells injury induced by oxygen and glucose deprivation/reperfusion (OGD/R) and its possible mechanism on the PI3K/AKT/mTOR pathway. The maestro 11.1 software was used to predict the binding sites of DHL with LC3, Beclin-1, PI3K, AKT, mTOR, Bax, Bcl-2, Caspase-3, Caspase-9, and Caspase-7. We used a cellular model of 2 h of OGD and 24 h of reperfusion to mimic cerebral ischemia-reperfusion injury. Cells were treated with DHL during the reperfusion phase. The docking results showed that DHL had binding sites with LC3, Beclin-1, PI3K, AKT, mTOR, Bax, Bcl-2, Caspase-3, Caspase-9, and Caspase-7. The expression levels of autophagy-related proteins, LC3 and Beclin-1 increased while P-PI3K, P-AKT, and P-mTOR decreased. Apoptosis-related proteins, namely, Bax, Cyto-c, Caspase-3, Caspase-7, Caspase-9 increased, but the anti-apoptosis Bcl-2 protein decreased. However, DHL effectively inhibited these undesirable changes induced by OGD/R in PC12 cells. Our results suggested that DHL attenuated OGD/R-induced neuronal injury by inhibiting apoptosis and autophagy by activating PI3K/AKT/mTOR signaling. This inhibition can improve cell survival and offer evidence for the beneficial effects of DHL on the nervous system.


Asunto(s)
Glucosa , Animales , Células PC12 , Ratas
16.
J Virol ; 95(24): e0153721, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34550769

RESUMEN

Autophagy is thought to be involved in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, how SARS-CoV-2 interferes with the autophagic pathway and whether autophagy contributes to virus infection in vivo is unclear. In this study, we identified SARS-CoV-2-triggered autophagy in animal models, including the long-tailed or crab-eating macaque (Macaca fascicularis), human angiotensin-converting enzyme 2 (hACE2) transgenic mice, and xenografted human lung tissues. In Vero E6 and Huh-7 cells, SARS-CoV-2 induces autophagosome formation, accompanied by consistent autophagic events, including inhibition of the Akt-mTOR pathway and activation of the ULK-1-Atg13 and VPS34-VPS15-Beclin1 complexes, but it blocks autophagosome-lysosome fusion. Modulation of autophagic elements, including the VPS34 complex and Atg14, but not Atg5, inhibits SARS-CoV-2 replication. Moreover, this study represents the first to demonstrate that the mouse bearing xenografted human lung tissue is a suitable model for SARS-CoV-2 infection and that autophagy inhibition suppresses SARS-CoV-2 replication and ameliorates virus-associated pneumonia in human lung tissues. We also observed a critical role of autophagy in SARS-CoV-2 infection in an hACE2 transgenic mouse model. This study, therefore, gives insights into the mechanisms by which SARS-CoV-2 manipulates autophagosome formation, and we suggest that autophagy-inhibiting agents might be useful as therapeutic agents against SARS-CoV-2 infection. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global pandemic with limited therapeutics. Insights into the virus-host interactions contribute substantially to the development of anti-SARS-CoV-2 therapeutics. The novelty of this study is the use of a new animal model: mice xenografted with human lung tissues. Using a combination of in vitro and in vivo studies, we have obtained experimental evidence that induction of autophagy contributes to SARS-CoV-2 infection and improves our understanding of potential therapeutic targets for SARS-CoV-2.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , Autofagia , Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Pulmón/virología , SARS-CoV-2 , Replicación Viral , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Autofagosomas , Línea Celular Tumoral , Chlorocebus aethiops , Humanos , Pulmón/patología , Macaca , Masculino , Ratones , Ratones Transgénicos , Neumonía Viral/tratamiento farmacológico , ARN Interferente Pequeño/metabolismo , Células Vero
17.
Materials (Basel) ; 14(18)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34576479

RESUMEN

Nondestructive magnetic measurement methods can be successfully applied to determine the embrittlement of nuclear pressure vessel steel caused by neutron irradiation. It was found in previous works that reasonable correlation could be obtained between the nondestructively measured magnetic parameters and destructively determined ductile-to-brittle transition temperature. However, a large scatter of the measurement points was detected even in the cases of the non-irradiated reference samples. The reason for their scattering was attributed to the local inhomogeneity of material. This conclusion is verified in the present work by applying three different magnetic methods on two sets of Charpy samples made of two different reactor steel materials. It was found that by an optimal magnetic pre-selection of samples, a good, linear correlation can be found between magnetic parameters as well as the ductile-to-brittle transition temperature with low scattering of points. This result shows that neutron irradiation embrittlement depends very much on the local material properties.

18.
Materials (Basel) ; 14(18)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34576485

RESUMEN

Reactor safety research aims at the safe operation of nuclear power plants during their service life. In this respect, Fraunhofer IZFP's micromagnetic multiparameter, microstructure, and stress analysis (3MA) has already made a significant contribution to the understanding of different aging mechanisms of component materials and their characterization. The basis of 3MA is the fact that microstructure and mechanical stress determine both the mechanical and magnetic material behavior. The correlation between features of magnetic and mechanical material behavior enables the micromagnetic prediction of mechanical properties and stress, both of which can decisively influence the service life. The Federal Ministry for Economic Affairs and Energy (BMWi) funded this research, handling the mutually superimposed microstructural and stress-dependent influences, a substantial challenge, especially under practical conditions. This superposition leads to ambiguities in the micromagnetic features. The 3MA testing system has been extended by more sophisticated evaluation methods being able to cope with more complex datasets. Investigations dealing with the expansion of the feature extraction and machine learning methods have led to a more precise distinction between microstructural and stress-dependent influences. This approach provides the basis for future applications in reactor safety.

19.
Toxicol Ind Health ; 37(11): 662-673, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34565256

RESUMEN

Occupational exposure to silica dust is related to pulmonary inflammation and silicosis. Lipopolysaccharides (LPSs) could aggravate apoptosis in alveolar macrophages (AMs) of human silicosis through autophagy, yet how the reduction of autophagy attenuated LPS-induced lung injury and the related mechanisms need to be investigated. In the study, we aim to understand the role of 3-methyladenine (3-MA), an inhibitor of autophagy, in LPS-mediated inflammatory responses and fibrosis. We collected AMs from observers/silicosis patients. The results showed that LPS induced NF-κB-related pulmonary inflammation in observers and silicosis patients, as confirmed by an increase in the expression of IL-1ß, IL-6, TNF-α, and p65, which could be inhibited by 3-MA treatment. In mice models, at the early stage (7d) of silicosis, but not the late (28d) stage, blocking autophagy reversed the increased levels of IL-1ß, IL-6, TNF-α, and p65 caused by LPS. Mechanism study revealed that LPS triggered the expression of LC3 II, p62, and cleaved caspase-3 at the early stage exposed to silica, which could be restored by 3-MA, while there was no difference in the expression of LAMP1 either at the early or late stage of silicosis in different groups. Similarly, 3-MA treatment did not prevent fibrosis characterized by destroyed alveoli, collagen deposition, and increased expression of α-SMA and Col-1 induced by LPS at the late stage of silicosis. The results suggested that 3-MA has a role in the protection of lung injury at the early stage of silicosis and provided an experimental basis for preventive strategies of pulmonary inflammation and silicosis.


Asunto(s)
Nucleótidos de Adenina/farmacología , Lipopolisacáridos/metabolismo , FN-kappa B/metabolismo , Neumonía/prevención & control , Silicosis/prevención & control , Animales , China , Humanos , Inflamación/prevención & control , Masculino , Ratones , Ratones Endogámicos BALB C
20.
Ecotoxicology ; 30(9): 1941-1948, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34403000

RESUMEN

As an important PI3K (VPS34) inhibitor, 3-methyladenine (3-MA) can block the formation of autophagic vesicles in animals. Most toxicological studies using 3-MA have shown that 3-MA leads to serious disorders via autophagy suppression in mammals. However, no toxicological research on 3-MA has been performed on individuals undergoing regeneration. The freshwater planarian has powerful regenerative capability, and it can regenerate a new brain in 5 days and undergo complete adult individual remodelling in approximately 14 days. Moreover, it is also an excellent model organism for studies on environmental toxicology due to its high chemical sensitivity and extensive distribution. Here, Dugesia japonica planarians were treated with 3-MA, and the results showed that autophagy was inhibited and Djvps34 expression levels were down-regulated. After exposure to 10 mM 3-MA for 18 h, all the controls showed normal phenotypes, while one-half of the planarians treated with 3-MA showed morphological defects. In most cases, an ulcer appeared in the middle of the body, and a normal phenotype was restored 7 days following 3-MA exposure. During regeneration, disproportionate blastemas with tissue regression were observed. Furthermore, 3-MA treatment suppressed stem cell proliferation in intact and regenerating worms. These findings demonstrate that autophagy is indispensable for tissue homeostasis and regeneration in planarians and that 3-MA treatment is detrimental to planarian regeneration via its effect on the autophagy pathway.


Asunto(s)
Adenina/farmacología , Autofagia , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Planarias , Adenina/análogos & derivados , Animales , Encéfalo , Fosfatidilinositol 3-Quinasas , Planarias/efectos de los fármacos , Regeneración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...