RESUMEN
Cubosomes with an internal three-dimensional (3D) periodic and porous particulate nanostructure have emerged as a promising drug delivery system for hydrophobic small molecules as well as large biomolecules over the past several decades. Limited understanding of their safety profiles and biodistribution, however, hinders clinical translation. This study used monoolein-based cubosomes stabilized by Pluronic F127 and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)] polymers to encapsulate paclitaxel (PTX) as a model drug and investigated the in vitro cytotoxicity, in vivo acute response, and whole body biodistribution of the developed nanoparticles. Comparison of the PTX and nanoparticle cytotoxicity in two-dimensional and 3D spheroid cell models revealed distinct differences, with the cells in the 3D model found to be more tolerable to unloaded PTX as well as the PTX-loaded nanoparticle form. One-time intraperitoneal (i.p.) injection of unloaded cubosomes were generally well tolerated up to 400 mg/kg. Using the A431 skin cancer xenograft model, in vivo imaging studies showed the preferential accumulation of PTX-loaded cubosomes at the tumor sites following i.p. injection. Lastly, average tumor size was reduced by approximately 50% in the nanoparticle-based treatment group compared to the unloaded PTX drug group. The study provides significant information on the biological response of cubosomes and highlights their potential as a versatile drug delivery platform for safe and effective delivery of chemotherapeutic drugs.
RESUMEN
Preclinical efficacy and toxicity assessment of drug candidates plays a significant role in drug discovery and development. Traditional planar cell culture is a common way to perform the preclinical drug test, but it is difficult to correctly predict the drug efficacy and toxicity due to the simple two-dimensional (2D) extracellular microenvironment. Compared to the planar cell culture, three-dimensional (3D) cell culture system can better mimic the complex extracellular microenvironment where cells reside in the 3D tissues/organs in vivo. However, the conventional imaging techniques are difficult to achieve the dynamic and label-free monitoring of cellular behavior in thick sample by 3D cell culture. Here, 3D electric cell/matrigel-substrate impedance sensing (3D-ECMIS) is developed for real-time and non-invasive monitoring of 3D cell viability and drug susceptibility. In this study, human hepatoma cells (HepG2) are encapsulated in the matrigel scaffold and cultured in a 3D ECMIS chip which involves a pair of vertical golden electrodes on the opposite sidewalls of the culture chamber for the in-situ impedance measurement. Moreover, a portable multichannel system is developed to monitor the 3D cell/matrigel construct. The number of 3D-cultured cells was inversely proportional to the impedance magnitude of the entire cell/matrigel construct. Furthermore, anti-cancer drug screening will be conducted on the 3D-cultured cells when the cell proliferation reaches to a plateau phase. To validate the performance of 3D-ECMIS for the cell viability and drug susceptibility, the cell live/dead staining are utilized to confirm the results of drug susceptibility by this 3D-cell-based biosensor system. It is demonstrated that the 3D cell-based biosensor and 3D-ECMIS system will be a promising platform to improve the accuracy of cell-based anti-cancer drug screening in vitro.