RESUMEN
RNA modifications play an important role in actively controlling recently created formation in cellular regulation mechanisms, which link them to gene expression and protein. The RNA modifications have numerous alterations, presenting broad glimpses of RNA's operations and character. The modification process by the TET enzyme oxidation is the crucial change associated with cytosine hydroxymethylation. The effect of CR is an alteration in specific biochemical ways of the organism, such as gene expression and epigenetic alterations. Traditional laboratory systems that identify 5-hydroxymethylcytosine (5hmC) samples are expensive and time-consuming compared to other methods. To address this challenge, the paper proposed XGB5hmC, a machine learning algorithm based on a robust gradient boosting algorithm (XGBoost), with different residue based formulation methods to identify 5hmC samples. Their results were amalgamated, and six different frequency residue based encoding features were fused to form a hybrid vector in order to enhance model discrimination capabilities. In addition, the proposed model incorporates SHAP (Shapley Additive Explanations) based feature selection to demonstrate model interpretability by highlighting the high contributory features. Among the applied machine learning algorithms, the XGBoost ensemble model using the tenfold cross-validation test achieved improved results than existing state-of-the-art models. Our model reported an accuracy of 89.97%, sensitivity of 87.78%, specificity of 94.45%, F1-score of 0.8934%, and MCC of 0.8764%. This study highlights the potential to provide valuable insights for enhancing medical assessment and treatment protocols, representing a significant advancement in RNA modification analysis.
Asunto(s)
5-Metilcitosina , Algoritmos , Aprendizaje Automático , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Humanos , Citosina/análogos & derivados , Citosina/metabolismoRESUMEN
In recent years, important efforts have been made to elucidate the mechanisms of epigenetic regulation, and one of the most studied epigenetic modifications was DNA methylation/demethylation. In this study, the voltammetric behaviour of 5-hydroxymethylcytosine was studied in the pH range of 2.00-11.00 using pencil graphite electrodes by differential pulse and square wave voltammetry. The effect of buffer solutions, scan rate, square wave voltammetry parameters, and stripping conditions on the voltammetric responses of 5-hydroxymethylcytosine were performed. The electrochemical oxidation process of 5-hydroxymethylcytosine on the pencil graphite electrode was realized under adsorption control. In human urine, by square wave stripping voltammetry, 5-hydroxymethylcytosine was quantified in a concentration range of 1.00 × 10-5 M-2.00 × 10-4 M. The proposed method was tested in the presence of cytosine in human urine. The recovery value of 5-hydroxymethylcytosine was found to be 99.57 %.
RESUMEN
In the era of precision oncology, identifying abnormal genetic and epigenetic alterations has transformed the way cancer is diagnosed, managed, and treated. 5-hydroxymethylcytosine (5hmC) is an emerging epigenetic modification formed through the oxidation of 5-methylcytosine (5mC) by ten-eleven translocase (TET) enzymes. DNA hydroxymethylation exhibits tissue- and cancer-specific patterns and is essential in DNA demethylation and gene regulation. Recent advancements in 5hmC detection methods and the discovery of 5hmC in cell-free DNA (cfDNA) have highlighted the potential for cell-free 5hmC as a cancer biomarker. This review explores the current and emerging techniques and applications of DNA hydroxymethylation in cancer, particularly in the context of cfDNA.
Asunto(s)
5-Metilcitosina , Biomarcadores de Tumor , Ácidos Nucleicos Libres de Células , Metilación de ADN , Neoplasias , Humanos , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Neoplasias/genética , Neoplasias/diagnóstico , Ácidos Nucleicos Libres de Células/genética , Biomarcadores de Tumor/genética , Epigénesis GenéticaRESUMEN
BACKGROUND: Breast tumorigenesis is a complex and multistep process accompanied by both genetic and epigenetic dysregulation. In contrast to the extensive studies on DNA epigenetic modifications 5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) in malignant breast tumors, their roles in the early phases of breast tumorigenesis remain ambiguous. RESULTS: DNA 5hmC and 5mC exhibited a consistent and significant decrease from usual ductal hyperplasia to atypical ductal hyperplasia and subsequently to ductal carcinoma in situ (DCIS). However, 5hmC showed a modest increase in invasive ductal breast cancer compared to DCIS. Genomic analyses showed that the changes in 5hmC and 5mC levels occurred around the transcription start sites (TSSs), and the modification levels were strongly correlated with gene expression levels. Meanwhile, it was found that differentially hydroxymethylated regions (DhMRs) and differentially methylated regions (DMRs) were overlapped in the early phases and accompanied by the enrichment of active histone marks. In addition, TET2-related DNA demethylation was found to be involved in breast tumorigenesis, and four transcription factor binding sites (TFs: ESR1, FOXA1, GATA3, FOS) were enriched in TET2-related DhMRs/DMRs. Intriguingly, we also identified a certain number of common DhMRs between tumor samples and cell-free DNA (cfDNA). CONCLUSIONS: Our study reveals that dynamic changes in DNA 5hmC and 5mC play a vital role in propelling breast tumorigenesis. Both TFs and active histone marks are involved in TET2-related DNA demethylation. Concurrent changes in 5hmC signals in primary breast tumors and cfDNA may play a promising role in breast cancer screening.
Asunto(s)
5-Metilcitosina , Neoplasias de la Mama , Proteínas de Unión al ADN , Dioxigenasas , Proteínas Proto-Oncogénicas , Humanos , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Femenino , Neoplasias de la Mama/genética , Proteínas de Unión al ADN/genética , Dioxigenasas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Carcinogénesis/genética , Metilación de ADN/genética , Epigénesis Genética/genética , Regulación Neoplásica de la Expresión Génica , Desmetilación del ADNRESUMEN
Brain derived neurotrophic factor (BDNF) is the most studied trophic factor in the central nervous system (CNS), and its role in the maturation of neurons, including synapse development and maintenance has been investigated intensely for over three decades. The primary receptor for BDNF is the tropomyosin receptor kinase B (TrkB), which is broadly expressed as two primary isoforms in the brain; the full length TrkB (TrkB.FL) receptor, expressed mainly in neurons and the truncated TrkB (TrkB.T1) receptor. We recently demonstrated that TrkB.T1 is predominately expressed in astrocytes, and appears critical for astrocyte morphological maturation. Given the critical role of BDNF/TrkB pathway in healthy brain development and mature CNS function, we aimed to identify molecular underpinnings of cell-type specific expression of each TrkB isoform. Using Nanopore sequencing which enables direct, long read sequencing of native DNA, we profiled DNA methylation patterns of the entire TrkB gene, Ntrk2, in both neurons and astrocytes. Here, we identified robust differences in cell-type specific isoform expression associated with significantly different methylation patterns of the Ntrk2 gene in each cell type. Notably, astrocytes demonstrated lower 5mC methylation, and higher 5hmC across the entire gene when compared to neurons, including differentially methylated sites (DMSs) found in regions flanking the unique TrkB.T1 protein coding sequence (CDS). These data suggest DNA methylation patterns may provide instruction for isoform specific TrkB expression across unique CNS cell types.
RESUMEN
OBJECTIVE: To evaluate the diagnostic value of 5-hydroxymethylcytosines (5hmC) in circulating cell-free DNA (cfDNA) for nasopharyngeal carcinoma (NPC) and to develop a diagnostic model. METHODS: Genome-wide 5hmC profiles in cfDNA from 174 NPC patients and 146 non-cancer individuals were analyzed using the 5hmC-Seal technique. A cfDNA 5hmC-based diagnostic model to identify NPC patients was developed using least absolute shrinkage and selection operator (LASSO) logistic regression, and performance was evaluated with receiver operating characteristic (ROC) curves and confusion matrices. RESULTS: The 5hmC-Seal data from patients with NPC showed a different genome-wide distribution than non-tumor samples. Our initial analysis revealed a 12-gene-based 5hmC marker panel to be an accurate diagnostic model effectively distinguishing between NPC samples and non-cancerous samples (training set: area under curve (AUC)= 0.97 [95 % CI: 0.94-0.99]; and test set: AUC= 0.93 [95 % CI: 0.88-0.98]) superior to EBV DNA testing. The diagnostic score performed well in differentiating the non-cancer subjects from early-stage NPC (training set: AUC=0.99 [95 % CI: 0.98-1]; test set: AUC=0.98 [95 % CI: 0.95-1]), and advanced-stage NPC (training set: AUC=0.96 [95 % CI: 0.93-0.99]; test set: AUC=0.93 [95 % CI: 0.88-0.98]). Notably, in EBV-negative patients, the diagnostic scores showed excellent capacity for distinguishing EBV-negative patients with NPC from non-cancer subjects in both the training set (AUC= 0.94 [95 % CI: 0.88-1]) and test set (AUC=0.91 [95 % CI: 0.81-1]). CONCLUSION: 5hmC modifications in cfDNA are promising noninvasive biomarkers for NPC, offering high sensitivity and specificity, particularly for early-stage and EBV-negative NPC.
Asunto(s)
5-Metilcitosina , Biomarcadores de Tumor , Ácidos Nucleicos Libres de Células , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/diagnóstico , Carcinoma Nasofaríngeo/sangre , Carcinoma Nasofaríngeo/genética , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Masculino , Femenino , Persona de Mediana Edad , Ácidos Nucleicos Libres de Células/sangre , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/sangre , Neoplasias Nasofaríngeas/genética , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/sangre , Adulto , Anciano , Curva ROCRESUMEN
Tamoxifen, a selective estrogen receptor modulator (SERM), exhibits dual agonist or antagonist effects contingent upon its binding to either G-protein-coupled estrogen receptor (GPER) or estrogen nuclear receptor (ESR). Estrogen signaling plays a pivotal role in initiating epigenetic alterations and regulating estrogen-responsive genes in breast cancer. Employing three distinct breast cancer cell lines-MCF-7 (ESR+; GPER+), MDA-MB-231 (ESR-; GPER-), and SkBr3 (ESR-; GPER+)-this study subjected them to treatment with two tamoxifen derivatives: 4-hydroxytamoxifen (4-HT) and endoxifen (Endox). Through 2D high-performance liquid chromatography with tandem mass spectrometry detection (HPLC-MS/MS), varying levels of 5-methylcytosine (5-mC) were found, with MCF-7 displaying the highest levels. Furthermore, TET3 mRNA expression levels varied among the cell lines, with MCF-7 exhibiting the lowest expression. Notably, treatment with 4-HT induced significant changes in TET3 expression across all cell lines, with the most pronounced increase seen in MCF-7 and the least in MDA-MB-231. These findings underscore the influence of tamoxifen derivatives on DNA methylation patterns, particularly through modulating TET3 expression, which appears to be contingent on the presence of estrogen receptors. This study highlights the potential of targeting epigenetic modifications for personalized anti-cancer therapy, offering a novel avenue to improve treatment outcomes.
Asunto(s)
Neoplasias de la Mama , Dioxigenasas , Regulación Neoplásica de la Expresión Génica , Moduladores Selectivos de los Receptores de Estrógeno , Tamoxifeno , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Tamoxifeno/farmacología , Tamoxifeno/análogos & derivados , Femenino , Dioxigenasas/genética , Dioxigenasas/metabolismo , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Células MCF-7 , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Línea Celular Tumoral , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Metilación de ADN/efectos de los fármacos , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Espectrometría de Masas en TándemRESUMEN
Enzymatic modification of DNA nucleobases can coordinate gene expression, nuclease protection, or mutagenesis. We recently discovered a clade of phage-specific cytosine methyltransferase (MT) and 5-methylpyrimidine dioxygenase (5mYOX) enzymes that produce 5-hydroxymethylcytosine (5hmC) as a precursor for enzymatic hypermodifications on viral genomes. Here, we identify phage MT- and 5mYOX-associated glycosyltransferases (GTs) that catalyze linkage of diverse sugars to 5hmC nucleobase substrates. Metavirome mining revealed thousands of biosynthetic gene clusters containing enzymes with predicted roles in cytosine sugar hypermodification. We developed a platform for high-throughput screening of GT-containing pathways, relying on the Escherichia coli metabolome as a substrate pool. We successfully reconstituted several pathways and isolated diverse sugar modifications appended to cytosine, including mono-, di-, or tri-saccharides comprised of hexoses, N-acetylhexosamines, or heptose. These findings expand our knowledge of hypermodifications on nucleic acids and the origins of corresponding sugar-installing enzymes.
Asunto(s)
Glicosiltransferasas , Polisacáridos , Polisacáridos/metabolismo , Glicosiltransferasas/metabolismo , Glicosiltransferasas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , 5-Metilcitosina/metabolismo , 5-Metilcitosina/análogos & derivados , ADN/metabolismoRESUMEN
Allergic diseases, characterized by a broad spectrum of clinical manifestations and symptoms, encompass a significant category of IgE-mediated atopic disorders, including asthma, allergic rhinitis, atopic dermatitis, and food allergies. These complex conditions arise from the intricate interplay between genetic and environmental factors and are known to contribute to socioeconomic burdens globally. Recent advancements in the study of allergic diseases have illuminated the crucial role of DNA methylation (DNAm) in their pathogenesis. This review explores the factors influencing DNAm in allergic diseases and delves into their mechanisms, offering valuable perspectives for clinicians. Understanding these epigenetic modifications aims to lay the groundwork for improved early prevention strategies. Moreover, our analysis of DNAm mechanisms in these conditions seeks to enhance diagnostic and therapeutic approaches, paving the way for more effective management of allergic diseases in the future.
RESUMEN
Epigenetic cytosine methylation covers most of genomic CpG dinucleotides in human cells. In addition to common deamination-mediated mutagenesis at CpG sites, an alternative deamination-independent pathway associated with DNA polymerase activity was previously described. This mutagenesis is characterized by the TCGâTTG mutational signature and is believed to arise from dAMP misincorporation opposite 5-methylcytosine (mC) or its oxidized derivative 5-hydroxymethylcytosine (hmC) by B-family replicative DNA polymerases with disrupted proofreading 3â5'-exonuclease activity. In addition to being less stable and pro-mutagenic themselves, cytosine modifications also increase the risk of adjacent nucleotides damage, including the formation of 8-oxo-2'-deoxyguanosine (8-oxoG), a well-known mutagenic lesion. The effect of cytosine methylation on error-prone DNA polymerases lacking proofreading activity and involved in repair and DNA translesion synthesis remains unexplored. Here we analyze the efficiency and fidelity of translesion Y-family polymerases (Pol κ, Pol η, Pol ι and REV1) and primase-polymerase PrimPol opposite mC and hmC as well as opposite 8-oxoG adjacent to mC in the TCG context. We demonstrate that epigenetic cytosine modifications suppress Pol ι and REV1 activities and lead to increasing dAMP misincorporation by PrimPol, Pol κ and Pol ι in vitro. Cytosine methylation also increases misincorporation of dAMP opposite the adjacent 8-oxoG by PrimPol, decreases the TLS activity of Pol η opposite the lesion but increases dCMP incorporation opposite 8-oxoG by REV1. Altogether, these data suggest that methylation and hydroxymethylation of cytosine alter activity and fidelity of translesion DNA polymerases.
Asunto(s)
5-Metilcitosina , Citosina , Metilación de ADN , ADN Polimerasa Dirigida por ADN , Humanos , ADN Polimerasa Dirigida por ADN/metabolismo , Citosina/metabolismo , Citosina/análogos & derivados , 5-Metilcitosina/metabolismo , 5-Metilcitosina/análogos & derivados , Reparación del ADN , Daño del ADN , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , ADN Polimerasa iota , ADN/metabolismo , Enzimas Multifuncionales/metabolismo , Replicación del ADN , 8-Hidroxi-2'-Desoxicoguanosina/metabolismoRESUMEN
Recent advances in genetic and epigenetic research have underscored the significance of 5-hydroxymethylcytosine (5hmC) in neurodevelopmental disorders (NDDs), such as autism spectrum disorder (ASD) and intellectual disability (ID), revealing its potential as both a biomarker for early detection and a target for novel therapeutic strategies. This review article provides a comprehensive analysis of the role of 5hmC in NDDs by examining both animal models and human studies. By examining mouse models, studies have demonstrated that prenatal environmental challenges, such as maternal infection and food allergies, lead to significant epigenetic alterations in 5hmC levels, which were associated with NDDs in offspring, impacting social behavior, cognitive abilities and increasing ASD-like symptoms. In human studies, researchers have linked alterations in 5hmC levels NDDs through studies in individuals with ASD, fragile X syndrome, TET3 deficiency and ID, specifically identifying significant epigenetic modifications in genes such as GAD1, RELN, FMR1 and EN-2, suggesting that dysregulation of 5hmC played a critical role in the pathogenesis of these disorders and highlighted the potential for targeted therapeutic interventions. Moreover, we explore the implications of these findings for the development of epigenetic therapies aimed at modulating 5hmC levels. The review concludes with a discussion on future directions for research in this field, such as machine learning, emphasizing the need for further studies to elucidate the complex mechanisms underlying NDDs and to translate these findings into clinical practice. This paper not only advances our understanding of the epigenetic landscape of NDDs but also opens up new avenues for diagnosis and treatment, offering hope for individuals affected by these conditions.
RESUMEN
Cell-free DNA (cfDNA) has recently emerged as a promising minimally invasive diagnostic biomarker for various cancers. In this study, our aim was to identify cfDNA biomarkers by investigating genes that displayed significant differences between glioma patients and their corresponding controls. To accomplish this, we utilized publicly available data from the Gene Expression Omnibus, focusing on 5-hydroxymethylcytosine (5hmC) profiles in both cfDNA and genomic DNA (gDNA) from glioma patients and healthy individuals. The intersection of gene lists derived from these comparative analyses unveiled LRIG1 and ZNF703 as the two genes with elevated 5hmC levels in both the cfDNA of glioma patients and gDNA of glioma tissue compared to their respective controls. The gene expression data revealed both genes were upregulated in glioma tissue compared to normal brain tissue. Integration of 5hmC data revealed a strong positive correlation in the glioma tissue group between 5hmC and the gene expression of the LRIG1 gene. Furthermore, exploration using the AmiCa web tool indicated that LRIG1 gene expression was elevated compared to 17 other cancers included in the database, emphasizing its potential as a distinctive biomarker across multiple cancer types.
Asunto(s)
5-Metilcitosina , Biomarcadores de Tumor , Neoplasias Encefálicas , Ácidos Nucleicos Libres de Células , Glioma , Glicoproteínas de Membrana , Humanos , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Glioma/genética , Glioma/metabolismo , Glioma/patología , Ácidos Nucleicos Libres de Células/genética , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Regulación Neoplásica de la Expresión Génica , Metilación de ADNRESUMEN
BACKGROUND: 5-Hydroxymethylcytosine-enriched gene profiles and regions show tissue-specific and tumor specific. There is a potential value to explore cell-free DNA 5-hydroxymethylcytosine feature biomarkers for early gastric cancer detection. METHODS: A matched caseâcontrol study design with 50 gastric cancer patients and 50 controls was performed to sequence the different 5-hydroxymethylcytosine modification features of cell free DNA. Significantly differential 5-hydroxymethylcytosine modification genes were identified to construct a gastric cancer diagnostic model. Data set from GEO was used as an external testing set to test the robustness of the diagnostic model. RESULTS: Accounting for more than 90% of 5-hydroxymethylcytosine peaks were distributed in the gene body in both the gastric cancer and control groups. The diagnostic model was developed based on five different 5-hydroxymethylcytosine modification genes, FBXL7, PDE3A, TPO, SNTG2 and STXBP5. The model could effectively distinguish gastric cancer patients from controls in the training (AUC = 0.95, sensitivity = 88.6%, specificity = 94.3%), validation (AUC = 0.87, sensitivity = 73.3%, specificity = 93.3%) and testing (AUC = 0.90, sensitivity = 81.9%, specificity = 90.2%) sets. The risk scores of the controls from the model were significantly lower than those of gastric cancer patients in both our own data (P < 0.001) and GEO external testing data (P < 0.001), and no significant difference between different TNM stage patients (P = 0.09 and 0.66). Furthermore, there was no significant difference between the healthy control and benign gastric disease patients in the testing set from GEO (P = 0.10). CONCLUSIONS: The characteristics of 5-hydroxymethylcytosine in cell free DNA are specific to gastric cancer patients, and the diagnostic model constructed by five genes' 5-hydroxymethylcytosine features could effectively identify gastric cancer patients.
Asunto(s)
5-Metilcitosina , Biomarcadores de Tumor , Ácidos Nucleicos Libres de Células , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patología , 5-Metilcitosina/análogos & derivados , Biomarcadores de Tumor/genética , Masculino , Estudios de Casos y Controles , Femenino , Persona de Mediana Edad , Ácidos Nucleicos Libres de Células/genética , Anciano , Detección Precoz del Cáncer/métodos , Metilación de ADNRESUMEN
RNA modifications are pivotal in the development of newly synthesized structures, showcasing a vast array of alterations across various RNA classes. Among these, 5-hydroxymethylcytosine (5HMC) stands out, playing a crucial role in gene regulation and epigenetic changes, yet its detection through conventional methods proves cumbersome and costly. To address this, we propose Deep5HMC, a robust learning model leveraging machine learning algorithms and discriminative feature extraction techniques for accurate 5HMC sample identification. Our approach integrates seven feature extraction methods and various machine learning algorithms, including Random Forest, Naive Bayes, Decision Tree, and Support Vector Machine. Through K-fold cross-validation, our model achieved a notable 84.07% accuracy rate, surpassing previous models by 7.59%, signifying its potential in early cancer and cardiovascular disease diagnosis. This study underscores the promise of Deep5HMC in offering insights for improved medical assessment and treatment protocols, marking a significant advancement in RNA modification analysis.
Asunto(s)
5-Metilcitosina/análogos & derivados , Algoritmos , Redes Neurales de la Computación , Teorema de Bayes , Máquina de Vectores de Soporte , ARNRESUMEN
Metabolic reprogramming induced by Epstein-Barr virus (EBV) often mirrors metabolic changes observed in cancer cells. Accumulating evidence suggests that lytic reactivation is crucial in EBV-associated oncogenesis. The aim of this study was to explore the role of metabolite changes in EBV-associated malignancies and viral life cycle control. We first revealed that EBV (LMP1) accelerates the secretion of the oncometabolite D-2HG, and serum D-2HG level is a potential diagnostic biomarker for NPC. EBV (LMP1)-driven metabolite changes disrupts the homeostasis of global DNA methylation and demethylation, which have a significantly inhibitory effect on active DNA demethylation and 5hmC content. We found that loss of 5hmC indicates a poor prognosis for NPC patients, and that 5hmC modification is a restriction factor of EBV reactivation. We confirmed a novel EBV reactivation inhibitor, α-KG, which inhibits the expression of EBV lytic genes with CpG-containing ZREs and the latent-lytic switch by enhancing 5hmC modification. Our results demonstrate a novel mechanism of which metabolite abnormality driven by EBV controls the viral lytic reactivation through epigenetic modification. This study presents a potential strategy for blocking EBV reactivation, and provides potential targets for the diagnosis and therapy of NPC.
Asunto(s)
Metilación de ADN , Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Activación Viral , Humanos , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiología , Carcinoma Nasofaríngeo/virología , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/virología , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/complicaciones , Proteínas de la Matriz Viral/metabolismo , Proteínas de la Matriz Viral/genética , Epigénesis Genética , Progresión de la EnfermedadRESUMEN
Immune checkpoint inhibitors (ICIs) drastically improve therapeutic outcomes for lung cancer, but accurately predicting individual patient responses to ICIs remains a challenge. We performed the genome-wide profiling of 5-hydroxymethylcytosine (5hmC) in 85 plasma cell-free DNA (cfDNA) samples from lung cancer patients and developed a 5hmC signature that was significantly associated with progression-free survival (PFS). We built a 5hmC predictive model to quantify the 5hmC level and validated the model in the validation, test, and control sets. Low weighted predictive scores (wp-scores) were significantly associated with a longer PFS compared to high wp-scores in the validation [median 7.6 versus 1.8 months; p = 0.0012; hazard ratio (HR) 0.12; 95% confidence interval (CI), 0.03-0.54] and test (median 14.9 versus 3.3 months; p = 0.00074; HR 0.10; 95% CI, 0.02-0.50) sets. Objective response rates in patients with a low or high wp-score were 75.0% (95% CI, 42.8-94.5%) versus 0.0% (95% CI, 0.0-60.2%) in the validation set (p = 0.019) and 80.0% (95% CI, 44.4-97.5%) versus 0.0% (95% CI, 0.0-36.9%) in the test set (p = 0.0011). The wp-scores were also significantly associated with PFS in patients receiving single-agent ICI treatment (p < 0.05). In addition, the 5hmC predictive signature demonstrated superior predictive capability to tumor programmed death-ligand 1 and specificity to ICI treatment response prediction. Moreover, we identified novel 5hmC-associated genes and signaling pathways integral to ICI treatment response in lung cancer. This study provides proof-of-concept evidence that the cfDNA 5hmC signature is a robust biomarker for predicting ICI treatment response in lung cancer.
Asunto(s)
5-Metilcitosina , 5-Metilcitosina/análogos & derivados , Ácidos Nucleicos Libres de Células , Inmunoterapia , Neoplasias Pulmonares , Humanos , 5-Metilcitosina/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Ácidos Nucleicos Libres de Células/genética , Ácidos Nucleicos Libres de Células/sangre , Masculino , Femenino , Inmunoterapia/métodos , Anciano , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Resultado del TratamientoRESUMEN
Telomerase reverse transcriptase (TERT) promoter mutation is associated with an aggressive clinical course in thyroid carcinomas. Therefore, detection of TERT promoter mutation is essential for proper patient management. 5-Hydroxymethylcytosine (5hmC) is an epigenetic marker involved in the DNA demethylation pathway, and its loss has been observed in various tumors. Loss of 5hmC has also been reported in thyroid carcinomas and is presented as a possible predictive biomarker for TERT promoter mutation and worse prognosis. This study evaluated the expression of TERT and 5hmC by immunohistochemistry (IHC) in 105 patients (44 in the TERT mutant group and 61 in the TERT wild group) with various thyroid carcinomas. H-scores were calculated using an image analyzer. The median H-scores of TERT IHC were significantly higher in the TERT mutant group than in the TERT wild group (47.15 vs. 9.80). The sensitivity and specificity of TERT IHC for predicting TERT promoter mutations were 65.9 and 65.7 %, respectively. Regardless of TERT promoter mutation status, the 5hmC H-scores were markedly lower in all subtypes of thyroid carcinomas compared to those in their normal counterparts. Significant differences in 5hmC H-scores were observed between N0 and N1 in total thyroid carcinomas, but not within the papillary thyroid carcinoma subgroup. In conclusion, TERT and 5hmC IHC have limitations in predicting the presence of TERT promoter mutations. The expression of 5hmC was downregulated in various thyroid carcinomas compared to that in normal and benign lesions, but comprehensive further studies are required to elucidate the role of 5hmC in thyroid carcinomas.
Asunto(s)
5-Metilcitosina , Biomarcadores de Tumor , Inmunohistoquímica , Mutación , Regiones Promotoras Genéticas , Telomerasa , Neoplasias de la Tiroides , Humanos , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Telomerasa/metabolismo , Telomerasa/genética , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Inmunohistoquímica/métodos , Masculino , Femenino , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Persona de Mediana Edad , Regiones Promotoras Genéticas/genética , Adulto , Anciano , Sensibilidad y EspecificidadRESUMEN
BACKGROUND: Aberrant DNA methylation is a vital molecular alteration commonly detected in type I endometrial cancers (EC), and tet methylcytosine dioxygenase 2 (TET2) and 5-hydroxymethylcytosine (5hmC) play significant roles in DNA demethylation. However, little is known about the function and correlation of TET2 and 5hmC co-expressed in EC. This study intended to investigate the clinical significance of TET2 and 5hmC in EC. METHODS: The levels of TET2 and 5hmC were detected in 326 endometrial tissues by immumohistochemistry, and the correlation of their level was detected by Pearson analysis. The association between the levels of TET2 and 5hmC and clinicopathologic characteristics was analyzed. Prognostic value of TET2 and 5hmC was explored by Kaplan-Meier analysis. The Cox proportional hazard regression model was used for univariate and multivariate analyses. RESULTS: Based on the analysis results, TET2 protein level was positively correlated with 5hmC level in EC tissues (r = 0.801, P < 0.001). TET2+5hmC+ (high TET2 and high 5hmC) association was significantly associated with well differentiation, myometrial invasion, negative lymph node metastasis, and tumor stage in EC. Association of TET2 and 5hmC was confirmed as a prognostic factor (HR = 2.843, 95%CI = 1.226-3.605, P = 0.007) for EC patients, and EC patients with TET2-5hmC- level had poor overall survival. CONCLUSIONS: In summary, the association of TET2 and 5hmC was downregulated in EC tissues, and may be a potential poor prognostic indicator for EC patients. Combined detection of TET2 and 5hmC may be valuable for the diagnosis and prognosis of EC.
Asunto(s)
5-Metilcitosina , Carcinoma Endometrioide , Dioxigenasas , Neoplasias Endometriales , Femenino , Humanos , 5-Metilcitosina/análogos & derivados , Carcinoma Endometrioide/genética , Relevancia Clínica , Dioxigenasas/genética , Dioxigenasas/metabolismo , Metilación de ADN , Proteínas de Unión al ADNRESUMEN
BACKGROUND: 5-hydroxymethylcytosine (5hmC) as an epigenetic modification can regulate gene expression, and its abnormal level is related with various tumor invasiveness and poor prognosis. Nevertheless, the current methods for 5hmC assay usually involve expensive instruments/antibodies, radioactive risk, high background, laborious bisulfite treatment procedures, and non-specific/long amplification time. RESULTS: We develop a glycosylation-mediated fluorescent biosensor based on helicase-dependent amplification (HDA) for label-free detection of site-specific 5hmC in cancer cells with zero background signal. The glycosylated 5hmC-DNA (5ghmC) catalyzed by ß-glucosyltransferase (ß-GT) can be cleaved by AbaSI restriction endonuclease to generate two dsDNA fragments with sticky ends. The resultant dsDNA fragments are complementary to the biotinylated probes and ligated by DNA ligases, followed by being captured by magnetic beads. After magnetic separation, the eluted ligation products act as the templates to initiate HDA reaction, generating abundant double-stranded DNA (dsDNA) products within 20 min. The dsDNA products are measured in a label-free manner with SYBR Green I as an indicator. This biosensor can measure 5hmC with a detection limit of 2.75 fM and a wide linear range from 1 × 10-14 to 1 × 10-8 M, and it can discriminate as low as 0.001% 5hmC level in complex mixture. Moreover, this biosensor can measure site-specific 5hmC in cancer cells, and distinguish tumor cells from normal cells. SIGNIFICANCE: This biosensor can achieve a zero-background signal without the need of either 5hmC specific antibody or bisulfite treatment, and it holds potential applications in biological research and disease diagnosis.
Asunto(s)
5-Metilcitosina/análogos & derivados , Técnicas Biosensibles , Neoplasias , Sulfitos , Glicosilación , ADN/genética , 5-Metilcitosina/metabolismoRESUMEN
The therapeutic potential of aerobic exercise in mitigating seizures and cognitive issues in temporal lobe epilepsy (TLE) is recognized, yet the underlying mechanisms are not well understood. Using a rodent TLE model induced by Kainic acid (KA), we investigated the impact of a single bout of exercise (i.e., acute) or 4 weeks of aerobic exercise (i.e., chronic). Blood was processed for epilepsy-associated serum markers, and DNA methylation (DNAme), and hippocampal area CA3 was assessed for gene expression levels for DNAme-associated enzymes. While acute aerobic exercise did not alter serum Brain-Derived Neurotrophic Factor (BDNF) or Interleukin-6 (IL-6), chronic exercise resulted in an exercise-specific decrease in serum BDNF and an increase in serum IL-6 levels in epileptic rats. Additionally, whole blood DNAme levels, specifically 5-hydroxymethylcytosine (5-hmC), decreased in epileptic animals following chronic exercise. Hippocampal CA3 5-hmC levels and ten-eleven translocation protein (TET1) expression mirrored these changes. Furthermore, immunohistochemistry analysis revealed that most 5-hmC changes in response to chronic exercise were neuron-specific within area CA3 of the hippocampus. Together, these findings suggest that DNAme mechanisms in the rodent model of TLE are responsive to chronic aerobic exercise, with emphasis on neuronal 5-hmC DNAme in the epileptic hippocampus.