Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Quant Imaging Med Surg ; 13(11): 7607-7620, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37969629

RESUMEN

Background and Objective: The maturation of ultra-high-field magnetic resonance imaging (MRI) [≥7 Tesla (7T)] has improved our capability to depict and characterise brain structures efficiently, with better signal-to-noise ratio (SNR) and spatial resolution. We evaluated whether these improvements benefit the clinical detection and management of Parkinson's disease (PD). Methods: We performed a literature search in March 2023 in PubMed (MEDLINE), EMBASE and Google Scholar for articles on "7T MRI" AND "Parkinson*", written in English, published between inception and 1st March, 2023, which we synthesised in narrative form. Key Content and Findings: In deep-brain stimulation (DBS) surgical planning, early studies show that 7T MRI can distinguish anatomical substructures, and that this results in reduced adverse effects. In other areas, while there is strong evidence for improved accuracy and precision of 7T MRI-based measurements for PD, there is limited evidence for meaningful clinical translation. In particular, neuromelanin-iron complex quantification and visualisation in midbrain nuclei is enhanced, enabling depiction of nigrosomes 1-5, improved morphometry and vastly improved radiological assessments; however, studies on the related clinical outcomes, diagnosis, subtyping, differentiation of atypical parkinsonisms, and monitoring of treatment response using 7T MRI are lacking. Moreover, improvements in clinical utility must be great enough to justify the additional costs. Conclusions: Together, current evidence supports feasible future clinical implementation of 7T MRI for PD. Future impacts to clinical decision making for diagnosis, differentiation, and monitoring of progression or treatment response are likely; however, to achieve this, further longitudinal studies using 7T MRI are needed in prodromal, early-stage PD and parkinsonism cohorts focusing on clinical translational potential.

2.
Magn Reson Med ; 89(1): 29-39, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36063499

RESUMEN

PURPOSE: To explore the potential of deuterium metabolic imaging (DMI) in the human brain in vivo at 7 T, using a multi-element deuterium (2 H) RF coil for 3D volume coverage. METHODS: 1 H-MR images and localized 2 H MR spectra were acquired in vivo in the human brain of 3 healthy subjects to generate DMI maps of 2 H-labeled water, glucose, and glutamate/glutamine (Glx). In addition, non-localized 2 H-MR spectra were acquired both in vivo and in vitro to determine T1 and T2 relaxation times of deuterated metabolites at 7 T. The performance of the 2 H coil was assessed through numeric simulations and experimentally acquired B1 + maps. RESULTS: 3D DMI maps covering the entire human brain in vivo were obtained from well-resolved deuterated (2 H) metabolite resonances of water, glucose, and Glx. The T1 and T2 relaxation times were consistent with those reported at adjacent field strengths. Experimental B1 + maps were in good agreement with simulations, indicating efficient and homogeneous B1 + transmission and low RF power deposition for 2 H, consistent with a similar array coil design reported at 9.4 T. CONCLUSION: Here, we have demonstrated the successful implementation of 3D DMI in the human brain in vivo at 7 T. The spatial and temporal nominal resolutions achieved at 7 T (i.e., 2.7 mL in 28 min, respectively) were close to those achieved at 9.4 T and greatly outperformed DMI at lower magnetic fields. DMI at 7 T and beyond has clear potential in applications dealing with small brain lesions.


Asunto(s)
Encéfalo , Imagenología Tridimensional , Humanos , Deuterio , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Imagenología Tridimensional/métodos , Glucosa/metabolismo , Agua , Imagen por Resonancia Magnética/métodos
3.
Quant Imaging Med Surg ; 12(6): 3406-3435, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35655840

RESUMEN

Neuroimaging using the 7-Tesla (7T) human magnetic resonance (MR) system is rapidly gaining popularity after being approved for clinical use in the European Union and the USA. This trend is the same for functional MR imaging (MRI). The primary advantages of 7T over lower magnetic fields are its higher signal-to-noise and contrast-to-noise ratios, which provide high-resolution acquisitions and better contrast, making it easier to detect lesions and structural changes in brain disorders. Another advantage is the capability to measure a greater number of neurochemicals by virtue of the increased spectral resolution. Many structural and functional studies using 7T have been conducted to visualize details in the white matter and layers of the cortex and hippocampus, the subnucleus or regions of the putamen, the globus pallidus, thalamus and substantia nigra, and in small structures, such as the subthalamic nucleus, habenula, perforating arteries, and the perivascular space, that are difficult to observe at lower magnetic field strengths. The target disorders for 7T neuroimaging range from tumoral diseases to vascular, neurodegenerative, and psychiatric disorders, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, major depressive disorder, and schizophrenia. MR spectroscopy has also been used for research because of its increased chemical shift that separates overlapping peaks and resolves neurochemicals more effectively at 7T than a lower magnetic field. This paper presents a narrative review of these topics and an illustrative presentation of images obtained at 7T. We expect 7T neuroimaging to provide a new imaging biomarker of various brain disorders.

4.
Magn Reson Med ; 88(3): 1419-1433, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35605167

RESUMEN

PURPOSE: To extend the coverage of brain coil arrays to the neck and cervical-spine region to enable combined head and neck imaging at 7 Tesla (T) ultra-high field MRI. METHODS: The coil array structures of a 64-channel receive coil and a 16-channel transmit coil were merged into one anatomically shaped close-fitting housing. Transmit characteristics were evaluated in a B1+ -field mapping study and an electromagnetic model. Receive SNR and the encoding capability for accelerated imaging were evaluated and compared with a commercially available 7 T brain array coil. The performance of the head-neck array coil was demonstrated in human volunteers using high-resolution accelerated imaging. RESULTS: In the brain, the SNR matches the commercially available 32-channel brain array and showed improvements in accelerated imaging capabilities. More importantly, the constructed coil array improved the SNR in the face area, neck area, and cervical spine by a factor of 1.5, 3.4, and 5.2, respectively, in regions not covered by 32-channel brain arrays at 7 T. The interelement coupling of the 16-channel transmit coil ranged from -14 to -44 dB (mean = -19 dB, adjacent elements <-18 dB). The parallel 16-channel transmit coil greatly facilitates B1+ field shaping required for large FOV neuroimaging at 7 T. CONCLUSION: This new head-neck array coil is the first demonstration of a device of this nature used for combined full-brain, head-neck, and cervical-spine imaging at 7 T. The array coil is well suited to provide large FOV images, which potentially improves ultrahigh field neuroimaging applications for clinical settings.


Asunto(s)
Cabeza , Imagen por Resonancia Magnética , Vértebras Cervicales , Diseño de Equipo , Cabeza/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Relación Señal-Ruido
5.
Quant Imaging Med Surg ; 11(1): 9-20, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33392007

RESUMEN

BACKGROUND: Proton magnetic resonance spectroscopy (MRS) provides a unique opportunity for in vivo measurements of the brain's metabolic profile. Two methods of mainstream data acquisition are compared at 7 T, which provides certain advantages as well as challenges. The two representative methods have seldom been compared in terms of measured metabolite concentrations and different scan times. The current study investigated proton MRS of the posterior cingulate cortex using a semi-localized by adiabatic selective refocusing (sLASER) sequence and a short echo time (TE) stimulated echo acquisition mode (sSTEAM) sequence, and it compared their reliability and repeatability at 7 T using a 32-channel head coil. METHODS: Sixteen healthy subjects were prospectively enrolled and scanned twice with an off-bed interval between scans. The scan parameters for sLASER were a TR/TE of 6.5 s/32 ms and 32 and 48 averages (sLASER×32 and sLASER×48, respectively). The scan parameters for sSTEAM were a TR/TE of 4 s/5 ms and 32, 48, and 64 averages (sSTEAM4×32, sSTEAM4×48, and sSTEAM4×64, respectively) in addition to that with a TR/TE of 8 s/5 ms and 32 averages (sSTEAM8×32). Data were analyzed using LCModel. Metabolites quantified with Cramér-Rao lower bounds (CRLBs) >50% were classified as not detected, and metabolites quantified with mean or median CRLBs ≤20% were included for further analysis. The SNR, CRLBs, coefficient of variation (CV), and metabolite concentrations were statistically compared using the Shapiro-Wilk test, one-way ANOVA, or the Friedman test. RESULTS: The sLASER spectra for N-acetylaspartate + N-acetylaspartylglutamate (tNAA) and glutamate (Glu) had a comparable or higher SNR than sSTEAM spectra. Ten metabolites had lower CRLBs than prefixed thresholds: aspartate (Asp), γ-aminobutyric acid (GABA), glutamine (Gln), Glu, glutathione (GSH), myo-inositol (Ins), taurine (Tau), the total amount of phosphocholine + glycerophosphocholine (tCho), creatine + phosphocreatine (tCr), and tNAA. Performance of the two sequences was satisfactory except for GABA, for which sLASER yielded higher CRLBs (≥18%) than sSTEAM. Some significant differences in CRLBs were noted, but they were ≤2% except for GABA and Gln. Signal averaging significantly lowered CRLBs for some metabolites but only by a small amount. Measurement repeatability as indicated by median CVs was ≤10% for Gln, Glu, Ins, tCho, tCr, and tNAA in all scans, and that for Asp, GABA, GSH, and Tau was ≥10% under some scanning conditions. The CV for GABA according to sLASER was significantly higher than that according to sSTEAM, whereas the CV for Ins was higher according to sSTEAM. An increase in signal averaging contribute little to lower CVs except for Ins. CONCLUSIONS: Both sequences quantified brain metabolites with a high degree of precision and repeatability. They are comparable except for GABA, for which sSTEAM would be a better choice.

6.
Front Neurol ; 12: 632749, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34992573

RESUMEN

Introduction: Multiple sclerosis (MS) is a demyelinating and neurodegenerative disease of the central nervous system, characterized by inflammatory-driven demyelination. Symptoms in MS manifest as both physical and neuropsychological deficits. With time, inflammation is accompanied by neurodegeneration, indicated by brain volume loss on an MRI. Here, we combined clinical, imaging, and serum biomarkers in patients with iron rim lesions (IRLs), which lead to severe tissue destruction and thus contribute to the accumulation of clinical disability. Objectives: Subcortical atrophy and ventricular enlargement using an automatic segmentation pipeline for 7 Tesla (T) MRI, serum neurofilament light chain (sNfL) levels, and neuropsychological performance in patients with MS with IRLs and non-IRLs were assessed. Methods: In total 29 patients with MS [15 women, 24 relapsing-remitting multiple sclerosis (RRMS), and five secondary-progressive multiple sclerosis (SPMS)] aged 38 (22-69) years with an Expanded Disability Status Score of 2 (0-8) and a disease duration of 11 (5-40) years underwent neurological and neuropsychological examinations. Volumes of lesions, subcortical structures, and lateral ventricles on 7-T MRI (SWI, FLAIR, and MP2RAGE, 3D Segmentation Software) and sNfL concentrations using the Simoa SR-X Analyzer in IRL and non-IRL patients were assessed. Results: (1) Iron rim lesions patients had a higher FLAIR lesion count (p = 0.047). Patients with higher MP2Rage lesion volume exhibited more IRLs (p <0.014) and showed poorer performance in the information processing speed tested within 1 year using the Symbol Digit Modalities Test (SDMT) (p <0.047). (2) Within 3 years, patients showed atrophy of the thalamus (p = 0.021) and putamen (p = 0.043) and enlargement of the lateral ventricles (p = 0.012). At baseline and after 3 years, thalamic volumes were lower in IRLs than in non-IRL patients (p = 0.045). (3) At baseline, IRL patients had higher sNfL concentrations (p = 0.028). Higher sNfL concentrations were associated with poorer SDMT (p = 0.004), regardless of IRL presence. (4) IRL and non-IRL patients showed no significant difference in the neuropsychological performance within 1 year. Conclusions: Compared with non-IRL patients, IRL patients had higher FLAIR lesion counts, smaller thalamic volumes, and higher sNfL concentrations. Our pilot study combines IRL and sNfL, two biomarkers considered indicative for neurodegenerative processes. Our preliminary data underscore the reported destructive nature of IRLs.

8.
Med Phys ; 44(12): 6195-6208, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28976586

RESUMEN

PURPOSE: In this work, we present an 8-channel transceiver (Tx/Rx) 7-channel receive (Rx) radiofrequency (RF) coil setup for 7 T ultrahigh-field MR imaging of the shoulder. METHODS: A C-shaped 8-channel Tx/Rx coil was combined with an anatomically close-fitting 7-channel Rx-only coil. The safety and performance parameters of this coil setup were evaluated on the bench and in phantom experiments. The 7 T MR imaging performance of the shoulder RF coil setup was evaluated in in vivo measurements using a 3D DESS, a 2D PD-weighted TSE sequence, and safety supervision based on virtual observation points. RESULTS: Distinct SNR gain and acceleration capabilities provided by the additional 7-channel Rx-only coil were demonstrated in phantom and in vivo measurements. The power efficiency indicated good performance of each channel and a maximum B1+ of 19 µT if the hardware RF power limits of the MR system were exploited. MR imaging of the shoulder was demonstrated with clinically excellent image quality and submillimeter spatial resolution. CONCLUSIONS: The presented 8-channel transceiver 7-channel receive RF coil setup was successfully applied for in vivo 7 T MRI of the shoulder providing a clear SNR gain vs the transceiver array without the additional receive array. Homogeneous images across the shoulder region were obtained using 8-channel subject-specific phase-only RF shimming.


Asunto(s)
Imagen por Resonancia Magnética/instrumentación , Ondas de Radio , Hombro/diagnóstico por imagen , Relación Señal-Ruido , Humanos , Fantasmas de Imagen
9.
J Magn Reson Imaging ; 46(6): 1573-1589, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28370675

RESUMEN

With more than 60 installed magnetic resonance imaging (MRI) systems worldwide operating at a magnetic field strength of 7T or higher, ultrahigh-field (UHF) MRI has been established as a platform for clinically oriented research in recent years. Profound technical and methodological developments have helped overcome the inherent physical challenges of UHF radiofrequency (RF) signal homogenization in the human body. The ongoing development of dedicated RF coil arrays was pivotal in realizing UHF body MRI, beyond mere brain imaging applications. Another precondition to clinical application of 7T MRI is the safety testing of implants and the establishment of safety concepts. Against this backdrop, 7T MRI and MR spectroscopy (MRS) recently have demonstrated capabilities and potentials for clinical diagnostics in a variety of studies. This article provides an overview of the immanent physical challenges of 7T UHF MRI and discusses recent technical solutions and safety concepts. Furthermore, recent clinically oriented studies are highlighted that span a broad application spectrum from 7T UHF brain to body MRI. LEVEL OF EVIDENCE: 4 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1573-1589.


Asunto(s)
Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Física , Diseño de Equipo , Humanos , Imagen por Resonancia Magnética/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...