RESUMEN
Adeno-associated virus (AAV) gene therapy for neurological disease has gained traction due to stunning advances in capsid evolution for CNS targeting. With AAV brain delivery now in focus, conventional improvements in viral expression vectors offer a complementary route for optimizing gene delivery. We previously introduced a novel AAV gene therapy to slow amyloid aggregation in the brain based on neuronal release of an Aß sequence variant that inhibited fibrilization of wild-type Aß. Here we explore three coding elements of the virally delivered DNA plasmid in an effort to maximize the production of therapeutic peptide in the brain. We demonstrate that simply replacing the Gaussia luciferase signal peptide with the mouse immunoglobulin heavy chain signal peptide increased release of variant Aß by â¼5-fold. Sequence modifications within the expressed minigene further increased peptide release by promoting γ-secretase cleavage. Addition of a cytosolic fusion tag compatible with γ-secretase interaction allowed viral transduction to be tracked by immunostaining, independent from the variant Aß peptide. Collectively these construct modifications increased neuronal production of therapeutic peptide by 10-fold upon intracranial AAV injection of neonatal mice. These findings demonstrate that modest changes in expression vector design can yield substantial gains in AAV efficiency for therapeutic applications.
RESUMEN
Corneal blindness affects more than 5 million individuals, with over 180,000 corneal transplantations (CTs) performed annually. In high-risk CTs, almost all grafts are rejected within 10 years. Here, we investigated adeno-associated virus (AAV) ex vivo gene therapy to establish immune tolerance in the corneal allograft to prevent high-risk CT rejection. Our previous work has demonstrated that HLA-G contributes to ocular immune privilege by inhibiting both immune cells and neovascularization; however, homodimerization is a rate-limiting step for optimal HLA-G function. Therefore, a chimeric protein called single-chain immunomodulator (scIM), was engineered to mimic the native activity of the secreted HLA-G dimer complex and eliminate the need for homodimerization. In a murine corneal burn model, AAV8-scIM significantly reduced corneal vascularization and fibrosis. Next, ex vivo AAV8-scIM gene delivery to corneal allografts was evaluated in a high-risk CT rejection rabbit model. All scIM-treated corneas were well tolerated and transparent after 42 days, while 83% of vehicle-treated corneas were rejected. Histologically, AAV-scIM-treated corneas were devoid of immune cell infiltration and vascularization, with minimal fibrosis at the host-graft interface. The data collectively demonstrate that scIM gene therapy prevents corneal neovascularization, reduces trauma-induced corneal fibrosis, and prevents allogeneic CT rejection in a high-risk large animal model.
RESUMEN
Mucopolysaccharidoses (MPSs) are childhood diseases caused by inherited deficiencies in glycosaminoglycan degradation. Most MPSs involve neurodegeneration, which to date is untreatable. Currently, most therapeutic strategies aim at correcting the primary genetic defect. Among these strategies, gene therapy has shown great potential, although its clinical application is challenging. We have shown previously in an MPS-IIIA mouse model that the molecular tweezer (MT) CLR01, a potent, broad-spectrum anti-amyloid small molecule, inhibits secondary amyloid storage, facilitates amyloid clearance, and protects against neurodegeneration. Here, we demonstrate that combining CLR01 with adeno-associated virus (AAV)-mediated gene therapy, targeting both the primary and secondary pathologic storage in MPS-IIIA mice, results in a synergistic effect that improves multiple therapeutic outcomes compared to each monotherapy. Moreover, we demonstrate that CLR01 is effective therapeutically in mouse models of other forms of neuronopathic MPS, MPS-I, and MPS-IIIC. These strongly support developing MTs as an effective treatment option for neuronopathic MPSs, both on their own and in combination with gene therapy, to improve therapeutic efficacy and translation into clinical application.
RESUMEN
Adeno-associated virus (AAV) mediated gene therapy is a leading gene delivery platform with potential to transform the landscape of treatment for neurological disorders. While AAV is deemed non-immunogenic compared to other viral vectors, adverse immune reactions have been observed in the clinic, raising concerns. As the central nervous system (CNS) has a tightly regulated immune system, characterized by a degree of tolerance, it has been considered a unique target for AAV gene therapy. AAV vectors have shown promising results for the treatment of several CNS disorders including Spinal Muscular Atrophy, Giant Axonal Neuropathy, Amyotrophic Lateral Sclerosis, Tay Sachs Disease, Parkinson's Disease, and others, demonstrating safety and success. The Food and Drug Administration (FDA) approval of Zolgensma and European Medicines Agency (EMA) approval of Upstaza, for Spinal Muscular Atrophy (SMA) and Aromatic l-amino acid decarboxylase deficiency (AADC) respectively, represent this success, all while highlighting significant differences in immune responses to AAV, particularly with regards to therapeutic administration route. AAV therapies like Upstaza that are injected directly into the immune-specialized brain have been characterized by mild immune response profiles and minor adverse events, whereas therapies like Zolgensma that are injected systemically demonstrate more robust immune stimulation and off-target toxicities. Despite these contrasting parallels, these therapeutics and others in the clinic have demonstrated clinical benefit for patients, warranting further exploration of immune responses to CNS-directed AAV clinical trials. Thus, in this review, we discuss effects of different routes of AAV administration on eliciting local and peripheral immune responses specifically observed in CNS-targeted trials.
Asunto(s)
Dependovirus , Terapia Genética , Vectores Genéticos , Humanos , Dependovirus/genética , Dependovirus/inmunología , Terapia Genética/métodos , Vectores Genéticos/inmunología , Vectores Genéticos/administración & dosificación , Animales , Sistema Nervioso Central/inmunología , Técnicas de Transferencia de Gen , Enfermedades del Sistema Nervioso Central/terapia , Enfermedades del Sistema Nervioso Central/inmunologíaRESUMEN
Alpha-mannosidosis is caused by a genetic deficiency of lysosomal alpha-mannosidase, leading to the widespread presence of storage lesions in the brain and other tissues. Enzyme replacement therapy is available but is not approved for treating the CNS, since the enzyme does not penetrate the blood-brain barrier. However, intellectual disability is a major manifestation of the disease; thus, a complimentary treatment is needed. While enzyme replacement therapy into the brain is technically feasible, it requires ports and frequent administration over time that are difficult to manage medically. Infusion of adeno-associated viral vectors into the cerebrospinal fluid is an attractive route for broadly targeting brain cells. We demonstrate here the widespread post-symptomatic correction of the globally distributed storage lesions by infusion of a high dose of AAV1-feline alpha-mannosidase (fMANB) into the CSF via the cisterna magna in the gyrencephalic alpha-mannosidosis cat brain. Significant improvements in clinical parameters occurred, and widespread global correction was documented pre-mortem by non-invasive magnetic resonance imaging. Postmortem analysis demonstrated high levels of MANB activity and reversal of lysosomal storage lesions throughout the brain. Thus, CSF treatment by adeno-associated viral vector gene therapy appears to be a suitable complement to systemic enzyme replacement therapy to potentially treat the whole patient.
RESUMEN
Fabry disease (FD) is a multisystemic lysosomal storage disorder caused by the loss of α-galactosidase A (α-Gal) function. The current standard of care, enzyme replacement therapies, while effective in reducing kidney pathology when treated early, do not fully ameliorate cardiac issues, neuropathic manifestations, and risk of cerebrovascular events. Adeno-associated virus (AAV)-based gene therapies (AAV-GT) can provide superior efficacy across multiple tissues owing to continuous, endogenous production of the therapeutic enzyme and lower treatment burden. We set out to develop a robust AAV-GT to achieve optimal efficacy with the lowest feasible dose to minimize any safety risks that are associated with high-dose AAV-GTs. In this proof-of-concept study, we evaluated the effectiveness of an rAAV9 vector expressing human GLA transgene under a strong ubiquitous promoter, combined with woodchuck hepatitis virus posttranscriptional regulatory element (rAAV9-hGLA). We tested our GT at three different doses, 5e10 vg/kg, 2.5e11 vg/kg, and 6.25e12 vg/kg in the G3Stg/GLAko Fabry mouse model that has tissue Gb3 substrate levels comparable with patients with FD and develops several early FD pathologies. After intravenous injections of rAAV9-hGLA at 11 weeks of age, we observed dose-dependent increases in α-Gal activity in the key target tissues, reaching as high as 393-fold of WT in the kidneys and 6156-fold in the heart at the highest dose. Complete or near-complete substrate clearance was observed in animals treated with the two higher dose levels tested in all tissues except for the brain. We also found dose-dependent improvements in several pathological biomarkers, as well as prevention of structural and functional organ pathology. Taken together, these results indicate that an AAV-GT under a strong ubiquitous promoter has the potential to address the unmet therapeutic needs in patients with FD at relatively low doses.
Asunto(s)
Dependovirus , Modelos Animales de Enfermedad , Enfermedad de Fabry , Terapia Genética , Vectores Genéticos , alfa-Galactosidasa , Enfermedad de Fabry/terapia , Enfermedad de Fabry/genética , Animales , Terapia Genética/métodos , Ratones , Dependovirus/genética , alfa-Galactosidasa/genética , alfa-Galactosidasa/metabolismo , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Humanos , Transgenes , Prueba de Estudio Conceptual , Regiones Promotoras Genéticas , Riñón/patología , Riñón/metabolismo , Expresión GénicaRESUMEN
The neurodevelopmental disorder Pitt Hopkins syndrome (PTHS) causes clinical symptoms similar to Rett syndrome (RTT) patients. However, RTT is caused by MECP2 mutations whereas mutations in the TCF4 gene lead to PTHS. The mechanistic commonalities underling these two disorders are unknown, but their shared symptomology suggest that convergent pathway-level disruption likely exists. We reprogrammed patient skin derived fibroblasts into induced neuronal progenitor cells. Interestingly, we discovered that MeCP2 levels were decreased in PTHS patient iNPCs relative to healthy controls and that both iNPCs and iAstrocytes displayed defects in function and differentiation in a mutation-specific manner. When Tcf4+/- mice were genetically crossed with mice overexpressing MeCP2, molecular and phenotypic defects were significantly ameliorated, underlining and important role of MeCP2 in PTHS pathology. Importantly, post-natal intracerebroventricular gene replacement therapy with adeno-associated viral vector serotype 9 (AAV9)-expressing MeCP2 (AAV9.P546.MeCP2) significantly improved iNPC and iAstrocyte function and effectively ameliorated histological and behavioral defects in Tcf4+/- mice. Combined, our data suggest a previously unknown role of MeCP2 in PTHS pathology and common pathways that might be affected in multiple neurodevelopmental disorders. Our work highlights potential novel therapeutic targets for PTHS, including upregulation of MeCP2 expression or its downstream targets or, potentially, MeCP2-based gene therapy.
Asunto(s)
Modelos Animales de Enfermedad , Terapia Genética , Proteína 2 de Unión a Metil-CpG , Fenotipo , Factor de Transcripción 4 , Animales , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Terapia Genética/métodos , Ratones , Humanos , Factor de Transcripción 4/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/terapia , Masculino , Ratones Transgénicos , Femenino , Fibroblastos/metabolismo , Células-Madre Neurales/metabolismo , Ratones Endogámicos C57BL , Hiperventilación , FaciesRESUMEN
Alpha-1 antitrypsin deficiency (AATD) is characterized by both chronic lung disease due to loss of wild-type AAT (M-AAT) antiprotease function and liver disease due to toxicity from delayed secretion, polymerization, and aggregation of misfolded mutant AAT (Z-AAT). The ideal gene therapy for AATD should therefore comprise both endogenous Z-AAT suppression and M-AAT overexpression. We designed a dual-function rAAV3B (df-rAAV3B) construct, which was effective at transducing hepatocytes, resulting in a considerable decrease of Z-AAT levels and safe M-AAT augmentation in mice. We optimized df-rAAV3B and created two variants, AAV3B-E12 and AAV3B-G3, to simultaneously enhance the concentration of M-AAT in the bloodstream to therapeutic levels and silence endogenous AAT liver expression in cynomolgus monkeys. Our results demonstrate that AAV3b-WT, AAV3B-E12, and AAV3B-G3 were able to transduce the monkey livers and achieve high M-AAT serum levels efficiently and safely. In this nondeficient model, we did not find downregulation of endogenous AAT. However, the dual-function vector did serve as a potentially "liver-sparing" alternative for high-dose liver-mediated AAT gene replacement in the context of underlying liver disease.
RESUMEN
The hemophilias are the most common severe inherited bleeding disorders and are caused by deficiency of clotting factor (F) VIII (hemophilia A) or FIX (hemophilia B). The resultant bleeding predisposition significantly increases morbidity and mortality. The ability to improve the bleeding phenotype with modest increases in clotting factor levels has enabled the development and regulatory approval of adeno-associated viral (AAV) vector gene therapies for people with hemophilia A and B. The canine hemophilia model has proven to be one of the best predictors of therapeutic response in humans. Here, we report long-term follow-up of 12 companion dogs with severe hemophilia that were treated in a real-world setting with AAV gene therapy. Despite more baseline bleeding than in research dogs, companion dogs demonstrated a 94% decrease in bleeding rates and 61% improvement in quality of life over a median of 4.1 years (range 2.6-8.9). No new anti-transgene immune responses were detected; one dog with a pre-existing anti-FVIII inhibitor achieved immune tolerance with gene therapy. Two dogs expressing 1%-5% FVIII post gene therapy experienced fatal bleeding events. These data suggest AAV liver-directed gene therapy is efficacious in a real-world setting but should target expression >5% and closely monitor those with levels in the 1%-5% range.
RESUMEN
The enzyme choline acetyltransferase (ChAT) synthesizes acetylcholine from acetyl-CoA and choline at the neuromuscular junction and at the nerve terminals of cholinergic neurons. Mutations in the ChAT gene (CHAT) result in a presynaptic congenital myasthenic syndrome (CMS) that often associates with life-threatening episodes of apnea. Knockout mice for Chat (Chat-/-) die at birth. To circumvent the lethality of this model, we crossed mutant mice possessing loxP sites flanking Chat exons 4 and 5 with mice that expressed Cre-ERT2. Injection of tamoxifen (Tx) at postnatal (P) day 11 in these mice induced downregulation of Chat, autonomic failure, weakness, and death. However, a proportion of Chatflox/flox-Cre-ERT2 mice receiving at birth an intracerebroventricular injection of 2 × 1013 vg/kg adeno-associated virus type 9 (AAV9) carrying human CHAT (AAV9-CHAT) survived a subsequent Tx injection and lived to adulthood without showing signs of weakness. Likewise, injection of AA9-CHAT by intracisternal injection at P28 after the onset of weakness also resulted in survival to adulthood. The expression of Chat in spinal motor neurons of Chatflox/flox-Cre-ERT2 mice injected with Tx was markedly reduced, but AAV-injected mice showed a robust recovery of ChAT expression, which was mainly translated by the human CHAT RNA. The biodistribution of the viral genome was widespread but maximal in the spinal cord and brain of AAV-injected mice. No significant histopathological changes were observed in the brain, liver, and heart of AAV-injected mice after 1 year follow-up. Thus, AAV9-mediated gene therapy may provide an effective and safe treatment for patients severely affected with CHAT-CMS.
Asunto(s)
Colina O-Acetiltransferasa , Dependovirus , Ratones , Humanos , Animales , Colina O-Acetiltransferasa/genética , Colina O-Acetiltransferasa/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Distribución Tisular , Ratones Noqueados , Terapia GenéticaRESUMEN
Hematopoietic stem cell transplantation (HSCT) is the only approved treatment for presymptomatic infantile globoid cell leukodystrophy (GLD [Krabbe disease]). However, correction of disease is not complete, and outcomes remain poor. Herein we evaluated HSCT, intravenous (IV) adeno-associated virus rh10 vector (AAVrh10) gene therapy, and combination HSCT + IV AAVrh10 in the canine model of GLD. While HSCT alone resulted in no increase in survival as compared with untreated GLD dogs (â¼16 weeks of age), combination HSCT + IV AAVrh10 at a dose of 4E13 genome copies (gc)/kg resulted in delayed disease progression and increased survival beyond 1 year of age. A 5-fold increase in AAVrh10 dose to 2E14 gc/kg, in combination with HSCT, normalized neurological dysfunction up to 2 years of age. IV AAVrh10 alone resulted in an average survival to 41.2 weeks of age. In the peripheral nervous system, IV AAVrh10 alone or in addition to HSCT normalized nerve conduction velocity, improved ultrastructure, and normalized GALC enzyme activity and psychosine concentration. In the central nervous system, only combination therapy at the highest dose was able to restore galactosylceramidase activity and psychosine concentrations to within the normal range. These data have now guided clinical translation of systemic AAV gene therapy as an addition to HSCT (NCT04693598, NCT05739643).
Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucodistrofia de Células Globoides , Perros , Animales , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Galactosilceramidasa/genética , Psicosina , Trasplante de Células Madre Hematopoyéticas/métodos , Terapia Genética/métodos , Modelos Animales de EnfermedadRESUMEN
Mutations in the fukutin-related protein (FKRP) gene cause dystroglycanopathy, with disease severity ranging from mild LGMD2I to severe congenital muscular dystrophy. Recently, considerable progress has been made in developing experimental therapies, with adeno-associated virus (AAV) gene therapy and ribitol treatment demonstrating significant therapeutic effect. However, each treatment has its strengths and weaknesses. AAV gene therapy can achieve normal levels of transgene expression, but it requires high doses, with toxicity concerns and variable distribution. Ribitol relies on residual FKRP function and restores limited levels of matriglycan. We hypothesized that these two treatments can work synergistically to offer an optimized therapy with efficacy and safety unmatched by each treatment alone. The most effective treatment is the combination of high-dose (5e-13 vg/kg) AAV-FKRP with ribitol, whereas low dose (1e-13 vg/kg) AAV-FKRP combined with ribitol showed a 22.6% increase in positive matriglycan fibers and the greater improvement in pathology when compared to low-dose AAV-FKRP alone. Together, our results support the potential benefits of combining ribitol with AAV gene therapy for treating FKRP-related muscular dystrophy. The fact that ribitol is a metabolite in nature and has already been tested in animal models and clinical trials in humans without severe side effects provides a safety profile for it to be trialed in combination with AAV gene therapy.
Asunto(s)
Distrofias Musculares , Pentosiltransferasa , Animales , Humanos , Pentosiltransferasa/genética , Pentosiltransferasa/metabolismo , Pentosiltransferasa/uso terapéutico , Ribitol/metabolismo , Ribitol/uso terapéutico , Dependovirus/genética , Dependovirus/metabolismo , Distroglicanos/metabolismo , Distrofias Musculares/tratamiento farmacológico , Terapia Genética/métodos , Mutación , Músculo Esquelético/metabolismoRESUMEN
Autosomal dominant Alzheimer's disease (ADAD) is a rare early-onset form of Alzheimer's disease, caused by dominant mutations in one of three genes: presenilin 1, presenilin 2, and amyloid ß precursor protein (APP). Mutations in the presenilin 1 gene (PSEN1) account for the majority of cases, and individuals who inherit a single-mutant PSEN1 allele go on to develop early-onset dementia, ultimately leading to death. The presenilin 1 protein (PS1) is the catalytic subunit of the γ-secretase protease, a tetrameric protease responsible for cleavage of numerous transmembrane proteins, including Notch and the APP. Inclusion of a mutant PS1 subunit in the γ-secretase complex leads to a loss of enzyme function and a preferential reduction of shorter forms of Aß peptides over longer forms, an established biomarker of ADAD progression in human patients. In this study, we describe the development of a gene therapy vector expressing a wild-type (WT) copy of human PSEN1 to ameliorate the loss of function associated with PSEN1 mutations. We have carried out studies in mouse models using a recombinant AAV9 vector to deliver the PSEN1 gene directly into the central nervous system (CNS) and shown that we can normalize γ-secretase function and slow neurodegeneration in both PSEN1 conditional knockout and PSEN1 mutant knockin models. We have also carried out biodistribution studies in nonhuman primates (NHPs) and demonstrated the ability to achieve broad PS1 protein expression throughout the cortex and the hippocampus, two regions known to be critically involved in ADAD progression. These studies demonstrate preclinical proof of concept that expression of a WT human PSEN1 gene in cells harboring a dominant PSEN1 mutation can correct the γ-secretase dysfunction. In addition, direct administration of the recombinant AAV9 into the NHP brain can achieve broad expression at levels predicted to provide efficacy in the clinic.
Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Distribución Tisular , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Mutación , Terapia GenéticaRESUMEN
The cone-rod homeobox (CRX) protein is a key transcription factor essential for photoreceptor function and survival. Mutations in human CRX gene are linked to a wide spectrum of blinding diseases ranging from mild macular dystrophy to severe Leber congenital amaurosis (LCA), cone-rod dystrophy (CRD), and retinitis pigmentosa (RP). These diseases are still incurable and mostly inherited in an autosomal dominant form. Dysfunctional mutant CRX protein interferes with the function of wild-type CRX protein, demonstrating the dominant negative effect. At present, gene augmentation is the most promising treatment strategy for hereditary diseases. This study aims to review the pathogenic mechanisms of various CRX mutations and propose two therapeutic strategies to rescue sick photoreceptors in CRX-associated retinopathies, namely, Tet-On-hCRX system and adeno-associated virus (AAV)-mediated gene augmentation. The outcome of proposed studies will guide future translational research and suggest guidelines for therapy evaluation in terms of treatment safety and efficacy.
Asunto(s)
Amaurosis Congénita de Leber , Enfermedades de la Retina , Retinitis Pigmentosa , Humanos , Amaurosis Congénita de Leber/genética , Amaurosis Congénita de Leber/terapia , Amaurosis Congénita de Leber/patología , Mutación , Células Fotorreceptoras/patología , Enfermedades de la Retina/genética , Enfermedades de la Retina/terapia , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapiaRESUMEN
Although peripheral neuropathic pain is caused by peripheral nerve injury, it is not simply a peripheral nervous system disease. It causes abnormalities in both the central and peripheral nervous systems. Pathological phenomena, such as hyperactivation of sensory neurons and inflammation, are observed in both the dorsal root ganglion and spinal cord. Pain signals originating from the periphery are transmitted to the brain via the SC, and the signals are modulated by pathologically changing SC conditions. Therefore, the modulation of SC pathology is important for peripheral NP treatment. We investigated the effects of KLS-2031 (recombinant adeno-associated viruses expressing glutamate decarboxylase 65, glial cell-derived neurotrophic factor, and interleukin-10) delivered to the dorsal root ganglion on aberrant neuronal excitability and neuroinflammation in the SC of rats with peripheral NP. Results showed that KLS-2031 administration restored excessive excitatory transmission and inhibitory signals in substantia gelatinosa neurons. Moreover, KLS-2031 restored the in vivo hypersensitivity of wide dynamic range neurons and mitigated neuroinflammation in the SC by regulating microglia and astrocytes. Collectively, these findings demonstrated that KLS-2031 efficiently suppressed pathological pain signals and inflammation in the SC of peripheral NP model, and is a potential novel therapeutic approach for NP in clinical settings. PERSPECTIVE: Our study demonstrated that KLS-2031, a combination gene therapy delivered by transforaminal epidural injection, not only mitigates neuroinflammation but also improves SC neurophysiological function, including excitatory-inhibitory balance. These findings support the potential of KLS-2031 as a novel modality that targets multiple aspects of the complex pathophysiology of neuropathic pain.
Asunto(s)
Neuralgia , Enfermedades Neuroinflamatorias , Ratas , Animales , Neuralgia/terapia , Médula Espinal , Terapia Genética , Inflamación , Células Receptoras Sensoriales , Hiperalgesia , Ganglios EspinalesRESUMEN
BACKGROUND: Mucopolysaccharidosis IIIC (MPSIIIC) is one of four Sanfilippo diseases sharing clinical symptoms of severe cognitive decline and shortened lifespan. The missing enzyme, heparan sulfate acetyl-CoA: α-glucosaminide-N-acetyltransferase (HGSNAT), is bound to the lysosomal membrane, therefore cannot cross the blood-brain barrier or diffuse between cells. We previously demonstrated disease correction in MPSIIIC mice using an Adeno-Associated Vector (AAV) delivering HGSNAT via intraparenchymal brain injections using an AAV2 derived AAV-truetype (AAV-TT) serotype with improved distribution over AAV9. METHODS: Here, intraparenchymal AAV was delivered in sheep using catheters or Hamilton syringes, placed using Brainlab cranial navigation for convection enhanced delivery, to reduce proximal vector expression and improve spread. RESULTS: Hamilton syringes gave improved AAV-GFP distribution, despite lower vector doses and titres. AAV-TT-GFP displayed moderately better transduction compared to AAV9-GFP but both serotypes almost exclusively transduced neurons. Functional HGSNAT enzyme was detected in 24-37% of a 140g gyrencephalic sheep brain using AAV9-HGSNAT with three injections in one hemisphere. CONCLUSIONS: Despite variabilities in volume and titre, catheter design may be critical for efficient brain delivery. These data help inform a clinical trial for MPSIIIC.
Asunto(s)
Mucopolisacaridosis III , Animales , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Encéfalo , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos , Heparitina Sulfato/metabolismo , Mucopolisacaridosis/genética , Mucopolisacaridosis/terapia , Mucopolisacaridosis III/genética , Mucopolisacaridosis III/metabolismo , Mucopolisacaridosis III/terapia , Ovinos , Terapia GenéticaRESUMEN
Hepatotoxicity associated with intravenous/intrathecal adeno-associated virus (AAV) gene therapy has been observed in preclinical species and patients. In nonhuman primates, hepatotoxicity following self-complementary AAV9 administration varies from asymptomatic transaminase elevation with minimal to mild microscopic changes to symptomatic elevations of liver function and thromboinflammatory markers with microscopic changes consistent with marked hepatocellular necrosis and deteriorating clinical condition. These transient acute liver injury marker elevations occur from 3-4 days post intravenous administration to â¼2 weeks post intrathecal administration. No transaminase elevation or microscopic changes were observed with intrathecal administration of empty capsids or a "promoterless genome" vector, suggesting that liver injury after cerebrospinal fluid dosing in nonhuman primates is driven by viral transduction and transgene expression. Co-administration of prednisolone after intravenous or intrathecal dosing did not prevent liver enzyme or microscopic changes despite a reduction of T lymphocyte infiltration in liver tissue. Similarly, co-administration of rituximab/everolimus with intrathecal dosing failed to block AAV-driven hepatotoxicity. Self-complementary AAV-induced acute liver injury appears to correlate with high hepatocellular vector load, macrophage activation, and type 1 interferon innate virus-sensing pathway responses. The current work characterizes key aspects pertaining to early AAV-driven hepatotoxicity in cynomolgus macaques, highlighting the usefulness of this nonclinical species in that context.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Terapia Genética , Animales , Humanos , Macaca fascicularis/genética , Administración Intravenosa , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/terapia , Dependovirus/genética , Dependovirus/metabolismo , Vectores Genéticos/genéticaRESUMEN
Mucopolysaccharidosis IVA (MPS IVA; Morquio A syndrome) is caused by a deficiency of the N-acetylgalactosamine-6-sulfate-sulfatase (GALNS) enzyme, leading to the accumulation of glycosaminoglycans (GAG), keratan sulfate (KS) and chondroitin-6-sulfate (C6S), mainly in cartilage and bone. This lysosomal storage disorder (LSD) is characterized by severe systemic skeletal dysplasia. To this date, none of the treatment options for the MPS IVA patients correct bone pathology. Enzyme replacement therapy with elosulfase alpha provides a limited impact on bone growth and skeletal lesions in MPS IVA patients. To improve bone pathology, we propose a novel gene therapy with a small peptide as a growth-promoting agent for MPS IVA. A small molecule in this peptide family has been found to exert biological actions over the cardiovascular system. This work shows that an AAV vector expressing a C-type natriuretic (CNP) peptide induces bone growth in the MPS IVA mouse model. Histopathological analysis showed the induction of chondrocyte proliferation. CNP peptide also changed the pattern of GAG levels in bone and liver. These results suggest the potential for CNP peptide to be used as a treatment in MPS IVA patients.
Asunto(s)
Mucopolisacaridosis IV , Animales , Ratones , Sulfato de Queratano , Glicosaminoglicanos , Cartílago/patología , Desarrollo ÓseoRESUMEN
The therapeutic landscape for people living with hemophilia A (PwHA) has changed dramatically in recent years, but many clinical challenges remain, including the development of inhibitory antibodies directed against factor VIII (FVIII) that occur in approximately 30% of people with severe hemophilia A. Emicizumab, an FVIII mimetic bispecific monoclonal antibody, provides safe and effective bleeding prophylaxis for many PwHA, but clinicians still explore therapeutic strategies that result in immunologic tolerance to FVIII to enable effective treatment with FVIII for problematic bleeding events. This immune tolerance induction (ITI) to FVIII is typically accomplished through repeated long-term exposure to FVIII using a variety of protocols. Meanwhile, gene therapy has recently emerged as a novel ITI option that provides an intrinsic, consistent source of FVIII. As gene therapy and other therapies now expand therapeutic options for PwHA, we review the persistent unmet medical needs with respect to FVIII inhibitors and effective ITI in PwHA, the immunology of FVIII tolerization, the latest research on tolerization strategies, and the role of liver-directed gene therapy to mediate FVIII ITI.
Asunto(s)
Anticuerpos Biespecíficos , Hemofilia A , Hemostáticos , Humanos , Hemofilia A/tratamiento farmacológico , Hemofilia A/genética , Factor VIII/genética , Factor VIII/uso terapéutico , Hemorragia/tratamiento farmacológico , Tolerancia Inmunológica , Anticuerpos Biespecíficos/uso terapéutico , Anticuerpos Biespecíficos/farmacología , Resultado del Tratamiento , Hemostáticos/uso terapéutico , Terapia GenéticaRESUMEN
α1-antitrypsin (AAT) deficiency is a common autosomal recessive hereditary disorder, with a high risk for the development of early-onset panacinar emphysema. AAT, produced primarily in the liver, functions to protect the lung from neutrophil protease; with AAT deficiency, unimpeded neutrophil proteases destroy the lung parenchyma. AAT is susceptible to oxidative damage resulting in an inability to inhibit its target proteases, neutrophil elastase, and cathepsin G. The major sites of oxidative modification on the AAT molecule are methionine residues 351 and 358. We have previously demonstrated that an engineered variant of AAT that resists oxidation by modifying both protein surface methionines (M351V and M358L) provides antiprotease protection, despite oxidative stress. In mice, intravenous delivery of the modified AAT(AVL) variant by AAV serotype 8, AAV8hAAT(AVL), primarily to the liver resulted in long-term expression of an AAT that resists oxidative inactivation. In this study, we evaluated the safety of intravenous administration of AAV8hAAT(AVL) in a dose-escalating, blinded, placebo-controlled toxicology study in wild-type mice. The study assessed organ histology and clinical pathology findings of mice, intravenously administered AAV8hAAT(AVL) at three doses (5.0 × 1011, 5.0 × 1012, and 5.0 × 1013 genome copies [gc]/kg), compared to control mice injected intravenously with phosphate-buffered saline. As previously demonstrated, administration of AAV8hAAT(AVL) resulted in dose-dependent expression of high, potentially therapeutic, levels of serum human AAT protein that persist for at least 6 months. Antibodies against the AAV8 capsid were elicited as expected, but there was no antibody detected against the AAT(AVL) protein generated by the AAV8hAAT(AVL) vector. There was no morbidity or mortality observed in the study. The data demonstrate that intravenous administration of AAV8hAAT(AVL) is safe with no significant adverse effect attributed to AAV8hAAT(AVL) vector at any dose. This study demonstrates that AAV8hAAT(AVL) has a safety profile consistent with the requirements for proceeding to a clinical study.