Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Ther ; 32(7): 2094-2112, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38796704

RESUMEN

Sialidosis (mucolipidosis I) is a glycoprotein storage disease, clinically characterized by a spectrum of systemic and neurological phenotypes. The primary cause of the disease is deficiency of the lysosomal sialidase NEU1, resulting in accumulation of sialylated glycoproteins/oligosaccharides in tissues and body fluids. Neu1-/- mice recapitulate the severe, early-onset forms of the disease, affecting visceral organs, muscles, and the nervous system, with widespread lysosomal vacuolization evident in most cell types. Sialidosis is considered an orphan disorder with no therapy currently available. Here, we assessed the therapeutic potential of AAV-mediated gene therapy for the treatment of sialidosis. Neu1-/- mice were co-injected with two scAAV2/8 vectors, expressing human NEU1 and its chaperone PPCA. Treated mice were phenotypically indistinguishable from their WT controls. NEU1 activity was restored to different extent in most tissues, including the brain, heart, muscle, and visceral organs. This resulted in diminished/absent lysosomal vacuolization in multiple cell types and reversal of sialyl-oligosacchariduria. Lastly, normalization of lysosomal exocytosis in the cerebrospinal fluids and serum of treated mice, coupled to diminished neuroinflammation, were measures of therapeutic efficacy. These findings point to AAV-mediated gene therapy as a suitable treatment for sialidosis and possibly other diseases, associated with low NEU1 expression.


Asunto(s)
Dependovirus , Modelos Animales de Enfermedad , Terapia Genética , Vectores Genéticos , Mucolipidosis , Neuraminidasa , Animales , Dependovirus/genética , Terapia Genética/métodos , Mucolipidosis/terapia , Mucolipidosis/genética , Neuraminidasa/genética , Neuraminidasa/metabolismo , Ratones , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Humanos , Lisosomas/metabolismo , Ratones Noqueados , Transducción Genética , Expresión Génica
2.
Mol Ther Methods Clin Dev ; 30: 161-180, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37457303

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe hereditary disease caused by a deficiency in the dystrophin protein. The most frequent types of disease-causing mutations in the DMD gene are frameshift deletions of one or more exons. Precision genome editing systems such as CRISPR-Cas9 have shown potential to restore open reading frames in numerous animal studies. Here, we applied an AAV-CRISPR double-cut strategy to correct a mutation in the DMD mouse model with exon 8-34 deletion, encompassing the N-terminal actin-binding domain. We report successful excision of the 100-kb genomic sequence, which includes exons 6 and 7, and partial improvement in cardiorespiratory function. While corrected mRNA was abundant in muscle tissues, only a low level of truncated dystrophin was produced, possibly because of protein instability. Furthermore, CRISPR-Cas9-mediated genome editing upregulated the Dp71f dystrophin isoform on the sarcolemma. Given the previously reported Dp71-associated muscle pathology, our results question the applicability of genome editing strategies for some DMD patients with N-terminal mutations. The safety and efficacy of CRISPR-Cas9 constructs require rigorous investigation in patient-specific animal models.

3.
J Assoc Res Otolaryngol ; 23(5): 569-578, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36002664

RESUMEN

Adeno-associated viruses (AAVs) are viral vectors that offer an excellent platform for gene therapy due to their safety profile, persistent gene expression in non-dividing cells, target cell specificity, lack of pathogenicity, and low immunogenicity. Recently, gene therapy for genetic hearing loss with AAV transduction has shown promise in animal models. However, AAV transduction for gene silencing or expression to prevent or manage acquired hearing loss is limited. This review provides an overview of AAV as a leading gene delivery vector for treating genetic hearing loss in animal models. We highlight the advantages and shortcomings of AAV for investigating the mechanisms and preventing acquired hearing loss. We predict that AAV-mediated gene manipulation will be able to prevent acquired hearing loss.


Asunto(s)
Sordera , Pérdida Auditiva , Animales , Dependovirus/genética , Dependovirus/metabolismo , Vectores Genéticos , Terapia Genética , Técnicas de Transferencia de Gen , Pérdida Auditiva/genética , Pérdida Auditiva/prevención & control , Transducción Genética
4.
Mol Ther Methods Clin Dev ; 23: 644-658, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34901309

RESUMEN

AAV-mediated gene therapy holds promise for the treatment of lysosomal storage diseases (LSDs), some of which are already in clinical trials. Yet, ultra-rare subtypes of LSDs, such as some glycoproteinoses, have lagged. Here, we report on a long-term safety and efficacy preclinical study conducted in the murine model of galactosialidosis, a glycoproteinosis caused by a deficiency of protective protein/cathepsin A (PPCA). One-month-old Ctsa -/- mice were injected intravenously with a high dose of a self-complementary AAV2/8 vector expressing human CTSA in the liver. Treated mice, examined up to 12 months post injection, appeared grossly indistinguishable from their wild-type littermates. Sustained expression of scAAV2/8-CTSA in the liver resulted in the release of the therapeutic precursor protein in circulation and its widespread uptake by cells in visceral organs and the brain. Increased cathepsin A activity resolved lysosomal vacuolation throughout the affected organs and sialyl-oligosacchariduria. No signs of hyperplasia or inflammation were detected in the liver up to a year of age. Clinical chemistry panels, blood cell counts, and T cell immune responses were normal in all treated animals. These results warrant a close consideration of this gene therapy approach for the treatment of galactosialidosis, an orphan disease with no cure in sight.

5.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808129

RESUMEN

Mutations in the Crumbs homologue 1 (CRB1) gene cause inherited retinal dystrophies, such as early-onset retinitis pigmentosa and Leber congenital amaurosis. A Brown Norway rat strain was reported with a spontaneous insertion-deletion (indel) mutation in exon 6 of Crb1. It has been reported that these Crb1 mutant rats show vascular abnormalities associated with retinal telangiectasia and possess an early-onset retinal degenerative phenotype with outer limiting membrane breaks and focal loss of retinal lamination at 2 months of age. Here, we further characterized the morphological phenotype of new-born and adult Crb1 mutant rats in comparison with age-matched Brown Norway rats without a mutation in Crb1. A significantly decreased retinal function and visual acuity was observed in Crb1 mutant rats at 1 and 3 months of age, respectively. Moreover, in control rats, the subcellular localization of canonical CRB1 was observed at the subapical region in Müller glial cells while CRB2 was observed at the subapical region in both photoreceptors and Müller glial cells by immuno-electron microscopy. CRB1 localization was lost in the Crb1 mutant rats, whereas CRB2 was still observed. In addition, we determined the tropism of subretinal or intravitreally administered AAV5-, AAV9- or AAV6-variant ShH10Y445F vectors in new-born control and Crb1 mutant rat retinas. We showed that subretinal injection of AAV5 and AAV9 at postnatal days 5 (P5) or 8 (P8) predominantly infected the retinal pigment epithelium (RPE) and photoreceptor cells; while intravitreal injection of ShH10Y445F at P5 or P8 resulted in efficient infection of mainly Müller glial cells. Using knowledge of the subcellular localization of CRB1 and the ability of ShH10Y445F to infect Müller glial cells, canonical hCRB1 and hCRB2 AAV-mediated gene therapy were explored in new-born Crb1 mutant rats. Enhanced retinal function after gene therapy delivery in the Crb1 rat was not observed. No timely rescue of the retinal phenotype was observed using retinal function and visual acuity, suggesting the need for earlier onset of expression of recombinant hCRB proteins in Müller glial cells to rescue the severe retinal phenotype in Crb1 mutant rats.


Asunto(s)
Proteínas de Unión al Calcio/genética , Dependovirus/fisiología , Terapia Genética/métodos , Proteínas del Tejido Nervioso/genética , Distrofias Retinianas/genética , Animales , Animales Recién Nacidos , Proteínas de Unión al Calcio/metabolismo , Proteínas Portadoras/genética , Dependovirus/genética , Células Ependimogliales/metabolismo , Proteínas del Ojo/genética , Vectores Genéticos/administración & dosificación , Vectores Genéticos/farmacología , Inyecciones Intravítreas , Proteínas de la Membrana/genética , Mutación , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Ratas , Ratas Mutantes , Retina/fisiopatología , Distrofias Retinianas/etiología , Distrofias Retinianas/terapia , Epitelio Pigmentado de la Retina/metabolismo , Tropismo Viral
6.
Methods Mol Biol ; 1846: 291-300, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30242767

RESUMEN

The lymphatic vessels can be selectively stimulated to grow in adult mice, rats and pigs by application of viral vectors expressing the lymphangiogenic factors VEGF-C or VEGF-D. Vice versa, lymphangiogenesis in various pathological settings can be inhibited by the blocking of the VEGF-C/VEGFR3 interaction using a ligand-binding soluble form of VEGFR3. Furthermore, the recently discovered plasticity of meningeal and lacteal lymphatic vessels provides novel opportunities for their manipulation in disease. Adenoviral and adeno-associated viral vectors (AAVs) provide suitable tools for establishing short- and long-term gene expression, respectively and adenoviral vectors have already been used in clinical trials. As an example, we describe here ways to manipulate the meningeal lymphatic vasculature in the adult mice via AAV-mediated gene delivery. The possibility of stimulation and inhibition of lymphangiogenesis in adult mice has enabled the analysis of the role and function of lymphatic vessels in mouse models of disease.


Asunto(s)
Dependovirus/genética , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Linfangiogénesis/genética , Expresión Génica , Humanos , Vasos Linfáticos/metabolismo , Transducción Genética , Transgenes , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Factor D de Crecimiento Endotelial Vascular/genética , Factor D de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...