Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Orthop Translat ; 38: 241-255, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36514714

RESUMEN

Objective: Knee osteoarthritis (KOA) is a highly prevalent musculoskeletal disorder characterized by degeneration of cartilage and abnormal remodeling of subchondral bone (SCB). Teriparatide (PTH (1-34)) is an effective anabolic drug for osteoporosis (OP) and regulates osteoprotegerin (OPG)/receptor activator of nuclear factor ligand (RANKL)/RANK signaling, which also has a therapeutic effect on KOA by ameliorating cartilage degradation and inhibiting aberrant remodeling of SCB. However, the mechanisms of PTH (1-34) in treating KOA are still uncertain and remain to be explored. Therefore, we compared the effect of PTH (1-34) on the post-traumatic KOA mouse model to explore the potential therapeutic effect and mechanisms. Methods: In vivo study, eight-week-old male mice including wild-type (WT) (n â€‹= â€‹54) and OPG-/- (n â€‹= â€‹54) were investigated and compared. Post-traumatic KOA model was created by destabilization of medial meniscus (DMM). WT mice were randomly assigned into three groups: the sham group (WT-sham; n â€‹= â€‹18), the DMM group (WT-DMM; n â€‹= â€‹18), and the PTH (1-34)-treated group (WT-DMM â€‹+ â€‹PTH (1-34); n â€‹= â€‹18). Similarly, the OPG-/- mice were randomly allocated into three groups as well. The designed mice were executed at the 4th, 8th, and 12th weeks to evaluate KOA progression. To further explore the chondro-protective of PTH (1-34), the ATDC5 chondrocytes were stimulated with different concentrations of PTH (1-34) in vitro. Results: Compared with the WT-sham mice, significant wear of cartilage in terms of reduced cartilage thickness and glycosaminoglycan (GAG) loss was detected in the WT-DMM mice. PTH (1-34) exhibited cartilage-protective by alleviating wear, retaining the thickness and GAG contents. Moreover, the deterioration of the SCB was alleviated and the expression of PTH1R/OPG/RANKL/RANK were found to increase after PTH (1-34) treatment. Among the OPG-/- mice, the cartilage of the DMM mice displayed typical KOA change with higher OARSI score and thinner cartilage. The damage of the cartilage was alleviated but the abnormal remodeling of SCB didn't show any response to the PTH (1-34) treatment. Compared with the WT-DMM mice, the OPG-/--DMM mice caught more aggressive KOA with thinner cartilage, sever cartilage damage, and more abnormal remodeling of SCB. Moreover, both the damaged cartilage from the WT-DMM mice and the OPG-/--DMM mice were alleviated but only the deterioration of SCB in WT-DMM mice was alleviated after the administration of PTH (1-34). In vitro study, PTH (1-34) could promote the viability of chondrocytes, enhance the synthesis of extracellular matrix (ECM) (AGC, COLII, and SOX9) at the mRNA and protein level, but inhibit the secretion of inflammatory cytokines (TNF-α and IL-6). Conclusion: Both wear of the cartilage was alleviated and aberrant remodeling of the SCB was inhibited in the WT mice, but only the cartilage-protective effect was observed in the OPG-/- mice. PTH (1-34) exhibited chondro-protective effect by decelerating cartilage degeneration in vivo as well as by promoting the proliferation and enhancing ECM synthesis of chondrocytes in vitro. The current investigation implied that the rescue of the disturbed SCB is dependent on the regulation of OPG while the chondro-protective effect is independent of modulation of OPG, which provides proof for the treatment of KOA. The translational potential of this article: Systemic administration of PTH (1-34) could exert a therapeutic effect on both cartilage and SCB in different mechanisms to alleviate KOA progression, which might be a novel therapy for KOA.

2.
J Ginseng Res ; 46(4): 515-525, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35818419

RESUMEN

Background: The incidence of ischemic cerebrovascular disease is increasing in recent years and has been one of the leading causes of neurological dysfunction and death. Ginsenoside Rg1 has been found to protect against neuronal damage in many neurodegenerative diseases. However, the effect and mechanism by which Rg1 protects against cerebral ischemia-reperfusion injury (CIRI) are not fully understood. Here, we report the neuroprotective effects of Rg1 treatment on CIRI and its possible mechanisms in mice. Methods: A bilateral common carotid artery ligation was used to establish a chronic CIRI model in mice. HT22 cells were treated with Rg1 after OGD/R to study its effect on [Ca2+]i. The open-field test and pole-climbing experiment were used to detect behavioral injury. The laser speckle blood flowmeter was used to measure brain blood flow. The Nissl and H&E staining were used to examine the neuronal damage. The Western blotting was used to examine MAP2, PSD95, Tau, p-Tau, NOX2, PLC, p-PLC, CN, NFAT1, and NLRP1 expression. Calcium imaging was used to test the level of [Ca2+]i. Results: Rg1 treatment significantly improved cerebral blood flow, locomotion, and limb coordination, reduced ROS production, increased MAP2 and PSD95 expression, and decreased p-Tau, NOX2, p-PLC, CN, NFAT1, and NLRP1 expression. Calcium imaging results showed that Rg1 could inhibit calcium overload and resist the imbalance of calcium homeostasis after OGD/R in HT22 cells. Conclusion: Rg1 plays a neuroprotective role in attenuating CIRI by inhibiting oxidative stress, calcium overload, and neuroinflammation.

3.
Saudi J Biol Sci ; 29(7): 103312, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35663844

RESUMEN

The aim of this study is to assess the antioxidative profile and related pharmacological potentialities of the ethanolic extract of Amischotolype mollissima leaves, traditionally used in treating pain, injury, malarial fever, epilepsy and hyperacidity, followed by a computational approach for the analysis of bioactive compounds identified by GC-MS. In GC-MS analysis, the extract yielded ten compounds, with 4,6-di-t-butyl-2-alpha-methyl benzyl phenol having the highest amount. In vitro investigation of the antioxidative properties of the plant was conducted with 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical and hydrogen peroxide scavenging assays. The amounts of secondary metabolites phenolics, flavonoids, and tannins were measured at 142 mg GAE/g, 534 mg QE/g, and 110 mg GAE/g, respectively. An acute toxicity study was carried out on mice, which revealed no toxicity up to the dosage of 4000 mg/kg bw. For the dosages of extract at 250 and 500 mg/kg bw, the writhing response test induced by acetic acid exhibited a statistically significant (p < 0.05) analgesic effect in mice. The oral glucose tolerance test (OGTT) and alpha-glucosidase enzyme inhibitory activity assay were used to examine the antihyperglycemic potential, in which the extract reduced the blood glucose level to 6.22 mmol/l and 3.82 mmol/l, at dosages of 250 and 500 mg/kg bw, respectively at 60 min in OGTT even though no activity was observed in the α-glucosidase enzyme inhibitory assay. In an antibacterial assay, the extract's minimum inhibitory concentration (MIC) against E. coli, P. aeruginosa, and S. aureus was determined to be 8, 16, and 8 µg/ml, respectively. This study shows that the usage of A. mollissima leaves in folklore medication is justified.

4.
Mater Today Bio ; 13: 100206, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35128373

RESUMEN

Bone defects are a common challenge in the clinical setting. Bone tissue engineering (BTE) is an effective treatment for the clinical problem of large bone defects. In this study, we fabricated silk fibroin (SF)/hydroxyapatite (HAp) scaffolds inlaid with naringin poly lactic-co-glycolic acid (PLGA) microspheres, investigating the feasibility of their application in BTE. Naringin PLGA microspheres were manufactured and adhered to the SF/HAp scaffold. Bone mesenchymal stem cells (BMSCs) were inoculated onto the SF/HAp scaffold containing naringin PLGA microsphere to examine the biocompatibility of the SF/HAp scaffolds. A rabbit femoral distal bone defect model was used to evaluate the in vivo function of the SF/HAp scaffolds containing naringin-loaded PLGA microspheres. The current study demonstrated that SF/HAp scaffolds containing naringin-loaded PLGA microspheres show promise as osteo-modulatory biomaterials for bone regeneration.

5.
Transl Res ; 244: 1-31, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34871811

RESUMEN

The aim of this study was to identify miRNAs that regulate AKI and develop their applications as diagnostic biomarkers and therapeutic agents. First, kidney tissues from two different AKI mouse models, namely, AKI induced by the administration of lipopolysaccharide (LPS) causing sepsis (LPS-AKI mice) and AKI induced by renal ischemia-reperfusion injury (IRI-AKI mice), were exhaustively screened for their changes of miRNA expression compared with that of control mice by microarray analysis followed by quantitative RT-PCR. The initial profiling newly identified miRNA-5100, whose expression levels significantly decreased in kidneys in both LPS-AKI mice and IRI-AKI mice. Next, the administration of miRNA-5100-mimic conjugated with a nonviral vector, polyethylenimine nanoparticles (PEI-NPs), via the tail vein significantly induced miRNA-5100 overexpression in the kidney and prevented the development of IRI-AKI mice by inhibiting several apoptosis pathways in vivo. Furthermore, serum levels of miRNA-5100 in patients with AKI were identified as significantly lower than those of healthy subjects. ROC analysis showed that the serum expression level of miRNA-5100 can identify AKI (cut-off value 0.14, AUC 0.96, sensitivity 1.00, specificity 0.833, p<0.05). These results suggest that miRNA-5100 regulates AKI and may be useful as a novel diagnostic biomarker and therapeutic target for AKI.


Asunto(s)
Lesión Renal Aguda , MicroARNs , Lesión Renal Aguda/genética , Animales , Biomarcadores , Humanos , Riñón/metabolismo , Lipopolisacáridos , Ratones , MicroARNs/genética
6.
IBRO Neurosci Rep ; 11: 56-63, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34939063

RESUMEN

INTRODUCTION: Several drugs of abuse (DOA) are capable of modulating neurohypophysial hormones, such as oxytocin (OT) and vasopressin (VP), potentially resulting in the development of psychological abnormalities, such as cognitive dysfunction, psychoses, and affective disorders. Efavirenz (EFV), widely used in Africa and globally to treat HIV, induces diverse neuropsychiatric side effects while its abuse has become a global concern. The actions of EFV may involve neurohypophysial system (NS) disruption like that of known DOA. This study investigated whether sub-chronic EFV exposure, at a previously-determined rewarding dose, alters peripheral OT and VP levels versus that of a control, ∆9-tetrahydrocannabinol (∆9-THC), methamphetamine (MA) and cocaine. MATERIALS AND METHODS: To simulate the conditions under which reward-driven behavior had previously been established for EFV, male Sprague Dawley rats (n = 16/exposure) received intraperitoneal vehicle (control) or drug administration across an alternating sixteen-day dosing protocol. Control administration (saline/olive oil; 0.2 ml) occurred on odd-numbered and drug administration (EFV: 5 mg/kg, ∆9-THC: 0.75 mg/kg, MA: 1 mg/kg, or cocaine: 20 mg/kg) on even-numbered days followed by euthanasia, trunk blood collection and plasma extraction for neuropeptide assay. Effect of drug exposure on peripheral OT and VP levels was assessed versus controls and quantified using specific ELISA kits. Statistical significance was determined by Kruskal-Wallis ANOVA, with p < 0.05. Ethics approval: NWU-00291-17-A5. RESULTS: Delta-9-THC reduced OT and VP plasma levels (p < 0.0001, p = 0.0141; respectively), cocaine reduced plasma OT (p = 0.0023), while MA reduced plasma VP levels (p = 0.0001), all versus control. EFV reduced OT and VP plasma levels (p < 0.0001; OT and VP) versus control, and similar to ∆9-THC. CONCLUSION: EFV markedly affects the NS in significantly reducing both plasma OT and VP equivalent to DOA. Importantly, EFV has distinct effects on peripheral OT and VP levels when assessed within the context of drug dependence. The data highlights a possible new mechanism underlying previously documented EFV-induced effects in rats, and whereby EFV may induce neuropsychiatric adverse effects clinically; also providing a deeper understanding of the suggested abuse-potential of EFV.

7.
Mater Today Bio ; 12: 100158, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34841240

RESUMEN

Tissue-engineered nerve grafts (TENGs) are the most promising way for repairing long-distance peripheral nerve defects. Chitosan and poly (lactic-co-glycolic acid) (PLGA) scaffolds are considered as the promising materials in the pharmaceutical and biomedical fields especially in the field of tissue engineering. To further clarify the effects of a chitosan conduit inserted with various quantity of poly (lactic-co-glycolic acid) (PLGA) scaffolds, and their degrades on the peripheral nerve regeneration, the chitosan nerve conduit inserted with different amounts of PLGA scaffolds were used to repair rat sciatic nerve defects. The peripheral nerve regeneration at the different time points was dynamically and comprehensively evaluated. Moreover, the influence of different amounts of PLGA scaffolds on the regeneration microenvironment including inflammatory response and cell state were also revealed. The modest abundance of PLGA is more instrumental to the success of nerve regeneration, which is demonstrated in terms of the structure of the regenerated nerve, reinnervation of the target muscle, nerve impulse conduction, and overall function. The PLGA scaffolds aid the migration and maturation of Schwann cells. Furthermore, the PLGA and chitosan degradation products in a correct ratio neutralize, reducing the inflammatory response and enhancing the regeneration microenvironment. The balanced microenvironment regulated by the degradants of appropriate PLGA scaffolds and chitosan conduit promotes peripheral nerve regeneration. The findings represent a further step towards programming TENGs construction, applying polyester materials in regenerative medicine, and understanding the neural regeneration microenvironment.

8.
Metabol Open ; 12: 100146, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34825159

RESUMEN

Growing evidence suggests that oxytocin (OT) plays an important factor for the control of food intake, body weight, and energy metabolism in human and non-human animals. It has reported previously, the downregulation in oxytocin receptors (OTRs) expression is linked with the development of obesity, but exogenous OT reverse body weight and food intake in obese animal model. It is important to know that, whether intraperitoneal administration crosses blood brain barrier. Therefore, in the present experiment, we study the impact of intraperitoneal administration of synthetic OT 0.0116 mg/kg and antagonist atosiban (OTA) 1 mg/kg on food intake, and body weight of female mice, Mus musculus for different duration i.e. 30, 60, and 90 days. In this study, it was observed that there was significant decrease (p<0.001, one-way analysis of variance [ANOVA]) in the body weight (BW), food intake, and gonadosmatic indices (GSI) after the intraperitoneal exposure of OT at dose 0.0116 mg/kg up to 90 days and inhibits via antagonist atosiban. These results indicates that intraperitoneal administration of OT can be used for treatment for longer duration without any side effects and maintains homeostasis in physiologic system regulates body weight and gonadal weight in female mice, which represent an important therapeutic tool for the obesity and metabolic disorder in female.

9.
Food Chem X ; 11: 100129, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34585136

RESUMEN

The effects of Moso bamboo (Phyllostachys edulis) shoot polysaccharide (BSP) on the human gut microbiota composition and volatile metabolite components were investigated by in vitro fermentation. After fermentation for 48 h, BSP utilization reached 40.29% and the pH of the fermentation solution decreased from 6.89 to 4.57. Moreover, the total short-chain fatty acid concentration significantly (P < 0.05) increased from 13.46 mM (0 h) to 43.20 mM (48 h). 16S rRNA analysis revealed several differences in the gut microbiota community structure of the BSP-treated and water-treated (control) cultures. In the BSP group, the abundance of Firmicutes, Actinobacteria, and Proteobacteria was significantly increased, while that of Bacteroidetes and Fusobacteria significantly decreased. Moreover, the concentrations of benzene, its substituted derivatives, and carbonyl compounds in the volatile metabolites of the BSP-treated group decreased, while that of organic acids significantly increased after 48 h of fermentation. These results demonstrate that BSP improves gastrointestinal health.

10.
J Bone Oncol ; 29: 100377, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34235049

RESUMEN

PURPOSE: The development of novel and efficient biomarkers for primary bone cancers is of grave importance. METHODS: The expression pattern of osteopontin (OPN) was investigated in the 153 patients with benign (n = 72) and malignant (n = 81) primary bone cancers. Both local and circulating OPN mRNA expression levels and their protein concentration in serum and tumor site were assessed using real-time qRT-PCR, ELISA, and immunohistochemistry techniques, respectively. As a control, 29 healthy individuals were considered. The number of 153 tumor tissue specimens and the 153 paired margins were taken on surgical resection from the patients. 153 blood samples were also drained from all participants, then peripheral blood mononuclear cells (PBMC) and sera were separated. RESULTS: The mean mRNA expression was significantly higher in all of the cancerous tissues than the paired margins and the PBMC of the patients than the controls. Consistently, the protein concentrations of OPN in serum and tumor tissues were significantly higher in the patients. Furthermore, the malignant cases had significantly elevated the mRNA levels and the protein compared to the benign cases. OPN could potentially differentiate the patients from the controls with 100% sensitivity and specificity in serum. Moreover, OPN could predict some of the malignant cases' clinicopathological features, including metastasis, recurrence, grade, and response to chemotherapy. CONCLUSIONS: In conclusion, OPN might be involved in the pathogenesis of primary bone tumors and can be considered as a potential biomarker to bone cancer diagnosis.

11.
Acta Pharm Sin B ; 11(5): 1274-1285, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34094833

RESUMEN

Liver is the most common metastatic site for colorectal cancer (CRC), there is no satisfied approach to treat CRC liver metastasis (CRCLM). Here, we investigated the role of a polycomb protein BMI-1 in CRCLM. Immunohistochemical analysis showed that BMI-1 expression in liver metastases was upregulated and associated with T4 stage, invasion depth and right-sided primary tumor. Knockdown BMI-1 in high metastatic HCT116 and LOVO cells repressed the migratory/invasive phenotype and reversed epithelial-mesenchymal transition (EMT), while BMI-1 overexpression in low metastatic Ls174T and DLD1 cells enhanced invasiveness and EMT. The effects of BMI-1 in CRC cells were related to upregulating snail via AKT/GSK-3ß pathway. Furthermore, knockdown BMI-1 in HCT116 and LOVO cells reduced CRCLM using experimental liver metastasis mice model. Meanwhile, BMI-1 overexpression in Ls174T and DLD1 significantly increased CRCLM. Moreover, sodium butyrate, a histone deacetylase and BMI-1 inhibitor, reduced HCT116 and LOVO liver metastasis in immunodeficient mice. Our results suggest that BMI-1 is a major regulator of CRCLM and provide a potent molecular target for CRCLM treatment.

12.
IBRO Neurosci Rep ; 10: 119-129, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33842918

RESUMEN

Morphological and functional characterizations of cultured microglia are essential for the improved understanding of their roles in neuronal health and disease. Although some studies (phenotype analysis, phagocytosis) can be carried out in mixed or microglia-enriched cultures, in others (gene expression) pure microglia must be used. If the use of genetically modified microglial cells is not feasible, isolation of resident microglia from nervous tissue must be carried out. In this study, mixed primary cultures were established from the forebrains of newborn rats. Secondary microglia-enriched cultures were then prepared by shaking off these cells from the primary cultures, which were subsequently used to establish tertiary cultures by further shaking off the easily detachable microglia. The composition of these cultures was quantitatively analyzed by immunocytochemistry of microglia-, astrocyte-, oligodendrocyte- and neuron-specific markers to determine yield and purity. Microglia were quantitatively characterized regarding morphological and proliferation aspects. Secondary and tertiary cultures typically exhibited 73.3% ± 17.8% and 93.1% ± 6.0% purity for microglia, respectively, although the total number of microglia in the latter was much smaller. One in seven attempts of culturing the tertiary cultures had ~99% purity for microglia. The overall yield from the number of cells plated at DIV0 to the Iba1-positive microglia in tertiary cultures was ~1%. Astrocytic and neuronal contamination progressively decreased during subcloning, while oligodendrocytes were found sporadically throughout culturing. Although the tertiary microglia cultures had a low yield, they produced consistently high purity for microglia; after validation, such cultures are suitable for purity-sensitive functional screenings (gene/protein expression).

13.
Toxicol Rep ; 8: 747-752, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33854951

RESUMEN

A novel functional drink with nutraceutical properties was formulated from the aqueous extracts of Ilex guayusa, and Vernonanthura patens leaves, and cocoa husks. This juice contains various bioactive compounds, such as phenolic compounds and methylxanthines, with antioxidant and stimulant properties of pharmacological interest. However, it is known whether herbal extracts' interaction may have adverse toxic effects on human health. To evaluate this functional drink's innocuity, we estimated the acute oral toxicity (AOT) in experimental mice. This paper presents the AOT evaluation of two formulations of a functional drink (pre-formulation and microencapsulation) at a single dose of 2000 mg/kg of body weight (b.w.). No signs of adverse toxicity and mortality were observed after a single oral dose of 2000 mg/kg b.w. Likewise, no significant body and organ weight changes, food and water consumption behavior, and no histopathological changes were observed in the main organs evaluated. In conclusion, this functional drink can be categorized as low toxicity " according to the Globally Harmonized Classification System (GHS), making it a potential beverage with high nutritional and pharmacological value.

14.
Saudi J Biol Sci ; 28(1): 870-878, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33424378

RESUMEN

The study aims to assess the concentration of vascular endothelial growth factors (VEGF) with platelet rich fibrin (PRF) biomaterial, while using it separately or in combination with nanohydroxyapatite (nano-HA) for treating intra-bony defects (IBDs) using radiographic evaluation (DBS-Win software). Sixty patients with IBD (one site/patient) and chronic periodontitis were recruited randomly to test either autologous PRF platelet concentrate, nano-HA bone graft, a combination of PRF platelet concentrate and nano-HA, or alone conventional open flap debridement (OFD). Recordings of clinical parameters including probing depth (PD), gingival index (GI), and clinical attachment level (CAL) were obtained at baseline and 6 months, post-operatively. One-way analysis of variance (ANOVA) was used to compare four groups; whereas, multiple comparisons were done through Tukey's post hoc test. The results showed that CAL at baseline changed from 6.67 ± 1.23 to 4.5 ± 1.42 in group I, 6.6 ± 2.51 to 4.9 ± 1.48 in group II, 5.2 ± 2.17 to 3.1 ± 1.27 in group III, and 4.7 ± 2.22 to 3.7 ± 2.35 in group IV after 6 months. The most significant increase in bone density and fill was observed for IBD depth in group III that was recorded as 62.82 ± 24.6 and 2.31 ± 0.75 mm, respectively. VEGF concentrations were significantly increased at 3, 7, and 14 days in all groups. The use of PRF with nano-HA was successful regenerative periodontal therapy to manage periodontal IBDs, unlike using PRF alone. Increase in VEGF concentrations in all group confirmed its role in angiogenesis and osteogenesis in the early stages of bone defect healing.

15.
Toxicol Rep ; 7: 1551-1563, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33294386

RESUMEN

Phenylhydrazine (PHZ), an intermediate in the synthesis of fine chemicals is toxic for human health and environment. Despite of having severe detrimental effects on different physiological systems, exposure of erythrocytes to PHZ cause destruction of haemoglobin and membrane proteins leading to iron release and complete haemolysis of red blood cells (RBC). Involvement of oxidative stress behind such action triggers the urge for searching a potent antioxidant. The benefits of consuming olive oil is attributed to its 75% oleic acid (OA) content in average. Olive oil is the basic component of Mediterranean diet. Hence, OA has been chosen in our present in vitro study to explore its efficacy against PHZ (1 mM) induced alterations in erythrocytes. Four different concentrations of OA (0.01 nM, 0.02 nM, 0.04 nM and 0.06 nM) were primarily experimented with, among which 0.06 nM OA has shown to give maximal protection. This study demonstrates the capability of OA in preserving the morphology, intracellular antioxidant status and the activities of metabolic enzymes of RBCs that have been diminished by PHZ, through its antioxidant mechanisms. The results of the present study firmly establish OA as a promising antioxidant for conserving the health of erythrocyte from PHZ toxicity which indicate toward future possible use of OA either singly or in combination with other dietary components for protection of erythrocytes against PHZ induced toxic cellular changes.

16.
J Tradit Complement Med ; 10(3): 188-197, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32670813

RESUMEN

Prior research argues for a role of increased de novo fatty acid synthesis in pathogenesis of prostate adenocarcinoma, which remains a leading cause of cancer-associated mortality in American men. A safe and effective inhibitor of fatty acid synthesis is still a clinically unmet need. Herein, we investigated the effect of ethanol extract of Withania somnifera root (WRE) standardized for one of its components (withaferin A) on fatty acid synthesis using LNCaP and 22Rv1 human prostate cancer cells. Withania somnifera is a medicinal plant used in the Ayurvedic medicine practiced in India. Western blotting and confocal microscopy revealed a statistically significant decrease in protein levels of key fatty acid metabolism enzymes including ATP citrate lyase (ACLY), acetyl-CoA carboxylase 1 (ACC1), fatty acid synthase (FASN), and carnitine palmitoyltransferase 1A (CPT1A) in WRE-treated cells compared with solvent control. The mRNA levels of ACLY, ACC1, FASN, and CPT1A were also lower in WRE-treated cells in comparison with control. Consequently, WRE treatment resulted in a significant decrease in intracellular levels of acetyl-CoA, total free fatty acids, and neutral lipid droplets in both LNCaP and 22Rv1 cells. WRE exhibited greater potency for fatty acid synthesis inhibition at equimolar concentration than cerulenin and etomoxir. Exposure to WRE results in downregulation of c-Myc and p-Akt(S473) proteins in 22Rv1 cell line. However, overexpression of only c-Myc conferred protection against clonogenic cell survival and lipogenesis inhibition by WRE. In conclusion, these results indicate that WRE is a novel inhibitor of fatty acid synthesis in human prostate cancer cells.

17.
IBRO Rep ; 8: 36-47, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32215337

RESUMEN

The technical difficulty to isolate microglia, astrocytes and infiltrating immune cells from mouse brain is nowadays a limiting factor in the study of neuroinflammation. Brain isolation requirements are cell-type and animal-age dependent, but current brain dissociation procedures are poorly standardized. This lack of comprehensive studies hampers the selection of optimized methodologies. Thus, we present here a comparative analysis of dissociation methods and Percoll-based separation to identify the most efficient procedure for the combined isolation of healthy microglia, astrocytes and infiltrated leukocytes; distinguishing neonatal and adult mouse brain. Gentle mechanical dissociation and DNase I incubation was supplemented with papain or collagenase II. Dispase II digestion was also used alone or in combination. In addition, cell separation efficiency of 30 % and 30-70 % Percoll gradients was compared. In these experiments, cell yield and integrity of freshly dissociated cells was measured by flow cytometry. We found that papain digestion in combination with dispase II followed by 30 % Percoll separation is the most balanced method to obtain a mixture of microglia, astrocytes and infiltrated immune cells; while addition of dispase II was not an advantage for neonatal brain. These dissociation conditions allowed flow cytometry detection of a slight glial activation triggered by sublethal LPS injection. In conclusion, the enzymes and Percoll density gradients tested here affected differently resting microglia, activated microglia/macrophages, astrocytes and infiltrated lymphocytes. Also, newborn and adult brain showed contrasting reactions to digestion. Our study highlights the strength of flow cytometry for the simultaneous analysis of neuroimmune cell populations once extraction is optimized.

18.
Toxicol Rep ; 7: 174-182, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32021807

RESUMEN

Novel forms of fibrillated cellulose offer improved attributes for use in foods. Conventional cellulose and many of its derivatives are already widely used as food additives and are authorized as safe for use in foods in many countries. However, novel forms have not yet been thoroughly investigated using standardized testing methods. This study assesses the 90-day dietary toxicity of fibrillated cellulose, as compared to a conventional cellulose, Solka Floc. Sprague Dawley rats were fed 2 %, 3 %, or 4 % fibrillated cellulose for 90 consecutive days, and parallel Solka Floc groups were used as controls. Survival, clinical observations, body weight, food consumption, ophthalmologic evaluations, hematology, serum chemistry, urinalysis, post-mortem anatomic pathology, and histopathology were monitored and performed. No adverse observations were noted in relation to the administration of fibrillated cellulose. Under the conditions of this study and based on the toxicological endpoints evaluated, the no-observed-adverse-effect level (NOAEL) for fibrillated cellulose was 2194.2 mg/kg/day (males) and 2666.6 mg/kg/day (females), corresponding to the highest dose tested (4 %) for male and female Sprague Dawley rats. These results demonstrate that fibrillated cellulose behaves similarly to conventional cellulose and raises no safety concerns when used as a food ingredient at these concentrations.

19.
Curr Res Pharmacol Drug Discov ; 1: 39-52, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34909641

RESUMEN

Brain oxidative signaling pathways have been identified as important targets for alleviating food deprivation-induced changes in metabolic gate-ways. Previous studies have shown that prenatal and early postnatal malnutrition alters leptin and ghrelin signaling via oxidative pathways. Thus, it has been hypothesized that agents with antioxidant properties might be beneficial for the mitigation of prenatal and early postnatal food scarcity-induced oxidative damage. Quercetin and kaempferol are natural bioflavonoids with proven antioxidant properties. In this study, we evaluated their effects on prenatal maternal food consumption, maternal and pup weights, biomarkers of orexigenic and anorexigenic hormones and oxidative stress in rats. Rats were allotted into different treatment groups (n â€‹= â€‹6) in three different experiments (prenatal, postnatal food-deprivations or both). Prenatal-food restriction (PrNFR) was induced by 50% of ad libitum accessible diet during pregnancy till parturition and postnatal-food restriction (PsNFR) was simulated by litter-enlargement to 16 pups per mother from postnatal day (PND) 2. Rats in each experiment were concurrently treated with vehicle (10 â€‹mL/kg), quercetin (50, 100 and 200 â€‹mg/kg, p.o.) or kaempferol (50, 100 and 200 â€‹mg/kg, p.o.) respectively. A third experimental group consisted of both protocols. Quercetin and kaempferol dose-dependently increased the body weights of pups exposed to PrNFR, PsNFR and PrNFR-PsNFR at PNDs 1-22 respectively. Both compounds increased maternal body weights but attenuated maternal food-intake at prenatal days 7 and 14 due by PrNFR. Quercetin and kaempferol reduced brain malondialdehyde concentrations and increased glutathione levels in PrNFR, PsNFR and PrNFR-PsNFR-exposed offspring of rats. Importantly, quercetin and kaempferol significantly (p â€‹< â€‹0.05) prevented PrNFR-, PsNFR- or PrNFR-PsNFR-induced alterations in leptin and ghrelin levels. Cumulatively, quercetin and kaempferol increased pup and maternal weights and attenuated maternal food-intake of rats submitted to PrNFR, PsNFR and PrNFR-PsNFR respectively, likely via nutrigenomic modulations of orexigenic/anorexigenic hormones and inhibition of brain oxidative stress.

20.
Regen Ther ; 15: 216-225, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33426222

RESUMEN

INTRODUCTION: Responses of oral-microflora-exposed dental pulp to a triple antibiotic paste (TAP), a mixture of ciprofloxacin, metronidazole, and minocycline in ointment with macrogol and propylene glycol, remain to be fully clarified at the cellular level. This study aimed to elucidate responses of oral-microflora-exposed dental pulp to capping with TAP in mouse molars. METHODS: A cavity was prepared on the first molars of 6-week-old mice to expose the dental pulp for 24 h. The exposed pulp was capped with TAP (TAP group) or calcium hydroxide cement (CH group), in addition to the combination of macrogol (M) and propylene glycol (P) (MP, control group), followed by a glass ionomer cement filling. The samples were collected at intervals of 1, 2, and 3 weeks, and immunohistochemistry for nestin and Ki-67 and deoxyuride-5'-triphosphate biotin nick end labeling (TUNEL) assay were performed in addition to quantitative real-time polymerase chain reaction (qRT-PCR) analyses. RESULTS: The highest occurrence rate of pulp necrosis was found in the control group followed by the CH group at Weeks 2 and 3, whereas the highest occurrence rate of healed areas in the dental pulp was observed in the TAP group at each time point. Tertiary dentin formation was first observed in the dental pulp of the TAP group at Week 2. In contrast, bone-like and/or fibrous tissues were frequently observed in the CH group. qRT-PCR analyses clarified that TAP activated the stem and dendritic cells at Weeks 1 and 2, respectively. CONCLUSIONS: The use of TAP as a pulp-capping agent improved the healing process of oral-microflora-exposed dental pulp in mouse molars.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...